dc.contributorMario Jorge Dias Carneiro
dc.contributorCarlos Maria Carballo
dc.contributorCarlos Maria Carballo
dc.contributorJose Antonio Goncalves Miranda
dc.contributorSalvador Addas Zanata
dc.creatorAndre Ribeiro de Resende Alves
dc.date.accessioned2019-08-13T06:14:44Z
dc.date.accessioned2022-10-03T23:07:22Z
dc.date.available2019-08-13T06:14:44Z
dc.date.available2022-10-03T23:07:22Z
dc.date.created2019-08-13T06:14:44Z
dc.date.issued2012-07-31
dc.identifierhttp://hdl.handle.net/1843/EABA-8YAT47
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3817114
dc.description.abstractOur objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolical periodic point has transverse homoclinic intersection; and a theorem by Newhouse, that proves the existence of a subset B Diffr!(M) such that if f 2 B then every quasi-elliptic periodic point of f is the limit of transverse homoclinic points off.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectsistemas dinâmicos
dc.titlePontos periódicos quase elípticos em sistemas dinâmicos conservativos
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución