dc.contributor | Mario Jorge Dias Carneiro | |
dc.contributor | Carlos Maria Carballo | |
dc.contributor | Carlos Maria Carballo | |
dc.contributor | Jose Antonio Goncalves Miranda | |
dc.contributor | Salvador Addas Zanata | |
dc.creator | Andre Ribeiro de Resende Alves | |
dc.date.accessioned | 2019-08-13T06:14:44Z | |
dc.date.accessioned | 2022-10-03T23:07:22Z | |
dc.date.available | 2019-08-13T06:14:44Z | |
dc.date.available | 2022-10-03T23:07:22Z | |
dc.date.created | 2019-08-13T06:14:44Z | |
dc.date.issued | 2012-07-31 | |
dc.identifier | http://hdl.handle.net/1843/EABA-8YAT47 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3817114 | |
dc.description.abstract | Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolical periodic point has transverse homoclinic intersection; and a theorem by Newhouse, that proves the existence of a subset B Diffr!(M) such that if f 2 B then every quasi-elliptic periodic point of f is the limit of transverse homoclinic points off. | |
dc.publisher | Universidade Federal de Minas Gerais | |
dc.publisher | UFMG | |
dc.rights | Acesso Aberto | |
dc.subject | sistemas dinâmicos | |
dc.title | Pontos periódicos quase elípticos em sistemas dinâmicos conservativos | |
dc.type | Dissertação de Mestrado | |