dc.contributorRenato Vidal da Silva Martins
dc.contributorDan Avritzer
dc.contributorNivaldo Medeiros
dc.creatorAllan de Sousa Soares
dc.date.accessioned2019-08-12T09:05:05Z
dc.date.accessioned2022-10-03T23:06:08Z
dc.date.available2019-08-12T09:05:05Z
dc.date.available2022-10-03T23:06:08Z
dc.date.created2019-08-12T09:05:05Z
dc.date.issued2011-03-25
dc.identifierhttp://hdl.handle.net/1843/EABA-8FXJWQ
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3816727
dc.description.abstractThe Grassmannian G(k; n) corresponds to the linear k-dimensional subespaces of Pn. Thus, given a variety X Pn of degree d, we de ne the Fano variety Fk(X) as a submanifold of G(k; n) formed by the k-dimensional linear spaces contained in X. In the case where X is hypersurface we will study, from the parameters n, k, d, under what conditions this variety is not empty. In the case that this variety is not empty will determine its dimension. Furthermore, we show that Fano variety of lines of a cubic surface without singular points of X P3 is composed of exactly 27 lines.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectGrassmanniana
dc.subjectVariedade de Fano
dc.subjectDimensão
dc.titleA Grassmanniana e a dimensão da variedade de fano de uma hipersuperfície
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución