dc.contributorRicardo Hiroshi Caldeira Takahashi
dc.contributorFrederico Ferreira Campos Filho
dc.contributorDenise Burgarelli Duczmal
dc.contributorRodney Josue Biezuner
dc.contributorDimitar Kolev Dimitrov
dc.creatorLourenço de Lima Peixoto
dc.date.accessioned2019-08-13T01:34:30Z
dc.date.accessioned2022-10-03T22:53:44Z
dc.date.available2019-08-13T01:34:30Z
dc.date.available2022-10-03T22:53:44Z
dc.date.created2019-08-13T01:34:30Z
dc.date.issued2015-07-01
dc.identifierhttp://hdl.handle.net/1843/EABA-9Y6NZK
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3812806
dc.description.abstractThe n points of Gauss-Gegenbauer quadrature are the zeros of the ultraspherical polynomial of degree n. The traditional and most-widely used eigensystem method computes the points as the eigenvalues of a symmetric tridiagonal matrix whose eigenvectors can be used to compute the corresponding weights. Alternatively the Newton-Raphson method can provide such points and weights using some properties of ultraspherical polynomials. In this work we show that if certain initial guesses are used, the Newton-Raphson method is in fact convergent for zeros of ultraspherical polynomials in the case 0 << 1. As a result weobtain some inequalities for zeros of ultraspherical polynomials. In addition, we compare the accuracy and computation time of both methods: eigensystem and Newton-Raphson.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectAutossistema
dc.subjectGauss-Gegenbauer
dc.subjectDesigualdades para zeros de polinômios ultraesféricos
dc.subjectNewton-Raphson
dc.titleDesigualdades que garantem a convergência do método de Newton-Raphson para os zeros do polinômio ultraesférico no caso principal
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución