dc.contributor | Ricardo Hiroshi Caldeira Takahashi | |
dc.contributor | Frederico Ferreira Campos Filho | |
dc.contributor | Denise Burgarelli Duczmal | |
dc.contributor | Rodney Josue Biezuner | |
dc.contributor | Dimitar Kolev Dimitrov | |
dc.creator | Lourenço de Lima Peixoto | |
dc.date.accessioned | 2019-08-13T01:34:30Z | |
dc.date.accessioned | 2022-10-03T22:53:44Z | |
dc.date.available | 2019-08-13T01:34:30Z | |
dc.date.available | 2022-10-03T22:53:44Z | |
dc.date.created | 2019-08-13T01:34:30Z | |
dc.date.issued | 2015-07-01 | |
dc.identifier | http://hdl.handle.net/1843/EABA-9Y6NZK | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3812806 | |
dc.description.abstract | The n points of Gauss-Gegenbauer quadrature are the zeros of the ultraspherical polynomial of degree n. The traditional and most-widely used eigensystem method computes the points as the eigenvalues of a symmetric tridiagonal matrix whose eigenvectors can be used to compute the corresponding weights. Alternatively the Newton-Raphson method can provide such points and weights using some properties of ultraspherical polynomials. In this work we show that if certain initial guesses are used, the Newton-Raphson method is in fact convergent for zeros of ultraspherical polynomials in the case 0 << 1. As a result weobtain some inequalities for zeros of ultraspherical polynomials. In addition, we compare the accuracy and computation time of both methods: eigensystem and Newton-Raphson. | |
dc.publisher | Universidade Federal de Minas Gerais | |
dc.publisher | UFMG | |
dc.rights | Acesso Aberto | |
dc.subject | Autossistema | |
dc.subject | Gauss-Gegenbauer | |
dc.subject | Desigualdades para zeros de polinômios ultraesféricos | |
dc.subject | Newton-Raphson | |
dc.title | Desigualdades que garantem a convergência do método de Newton-Raphson para os zeros do polinômio ultraesférico no caso principal | |
dc.type | Dissertação de Mestrado | |