Tese de Doutorado
Sistemas antiferromagneticos unidimensionais de spin-1
Fecha
2007-08-31Autor
Mariana Malard Sales
Institución
Resumen
Attending to the current tendency of research in quantum magnetism,our object of study comprises one-dimensional spin-1 antiferromagnetic(AFM) systems. They are analysed for two different physical pictures: anoise-driven 1D Nonlinear Sigma Model (NLSM) for S = 1 and the 1DAFM Heisenberg Model for S = 1 coupled to phonons. In the first work,we present a method of extracting the NLSM thermodynamics based onthe coupling between the sigma field and an external noise source. Thisapproach succeeds in capturing the thermal behavior of the spin-1 AFMchain subjected to a crystalline field enjoying certain stochastic properties. This is an effective method for the NLSM at finite temperature, moved by a phenomenological reasoning which is justified by comparison with experiment. The model excitations gap and line-width are derived from a perturbative calculation for the Greens function. The second work accounts for the interplay between vibrational and magnetic degrees of freedom, the so-called magnon-phonon coupling, which plays an important role in magnetism. The diagramatic Greens function perturbative method is used to investigate the phonon dynamics for the spin-1 1D antiferromagnet within the framework of an interaction Heisenberg model. This is treated via the Holstein-Primakoff transformations in the context of a modified spin wave theory. The so-obtained phonon relaxation function provides a measure ofthe effect of magnon-phonon coupling on phonon energy and life-time.