dc.contributorAna Cristina Vieira
dc.contributorhttp://lattes.cnpq.br/3170214917043916
dc.contributorRafael Bezerra dos Santos
dc.contributorAntonio Giambruno
dc.contributorLucas Henrique Calixto
dc.contributorThiago Castilho de Mello
dc.contributorViviane Ribeiro Tomaz da Silva
dc.creatorTatiana Aparecida Gouveia
dc.date.accessioned2020-01-07T16:34:43Z
dc.date.accessioned2022-10-03T22:36:33Z
dc.date.available2020-01-07T16:34:43Z
dc.date.available2022-10-03T22:36:33Z
dc.date.created2020-01-07T16:34:43Z
dc.date.issued2019-04-16
dc.identifierhttp://hdl.handle.net/1843/31731
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3806470
dc.description.abstractBy a ϕ-variety V we mean a supervariety or a ∗-variety generated by an associative algebra over a field F of characteristic zero. In this case, we can consider its sequence of ϕ-codimensions cϕ n(V). We say that V is minimal of polynomial growth nk if cϕ n(V) grows like nk,k > 0, but cϕ n(U) grows like nt with t < k, for any proper ϕ-subvariety U of V. In this thesis, we deal with minimal ϕ-varieties generated by unitary algebras and prove that for k ≤ 2 there are only a finite number of them. We also explicit a list of finite dimensional algebras generating such minimal ϕ-varieties. For k ≥ 3, we show that the number of minimal ϕ-varieties can be infinity and we classify all minimal ϕ-varieties of polynomial growth nk by providing a method for the construction of their ϕ-ideals.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectIdentidade polinomial
dc.subjectCrescimento das codimensões
dc.subjectÁlgebra com involução
dc.subjectSuperálgebra
dc.subjectVariedade minimal
dc.title*-Variedades minimais e supervariedades minimais de crescimento polinomial
dc.typeTese


Este ítem pertenece a la siguiente institución