dc.contributorJussara Marques de Almeida
dc.contributorMarcos Andre Goncalves
dc.contributorMarcos Andre Goncalves
dc.contributorGisele Lobo Pappa
dc.contributorLeandro Balby Marinho
dc.contributorRodrygo Luis Teodoro Santos
dc.contributorMarco Antonio Pinheiro de Cristo
dc.creatorFabiano Muniz Belem
dc.date.accessioned2019-08-14T13:53:48Z
dc.date.accessioned2022-10-03T22:33:50Z
dc.date.available2019-08-14T13:53:48Z
dc.date.available2022-10-03T22:33:50Z
dc.date.created2019-08-14T13:53:48Z
dc.date.issued2018-03-06
dc.identifierhttp://hdl.handle.net/1843/ESBF-B2LFAX
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3805395
dc.description.abstractThe design and evaluation of tag recommendation methods have historically focused on maximizing the relevance of the suggested tags for a given object, such as a movie or a song. However, relevance by itself may not be enough to guarantee recommendation usefulness. In this dissertation, we aim at proposing novel solutions that effectively address multiple aspects related to the tag recommendation problem, notably, relevance, novelty, diversity, and personalization. Towards that goal, we (1) propose and combine various tag quality attributes by means of heuristics and learning-to-rank (L2R) techniques, and (2) extend our best methods to address personalization, novelty (tag's specificity), and diversity (topic coverage), considering different scenarios of interest. Our evaluation, performed with data from five Web 2.0 applications, demonstrates the effectiveness of our new methods, and attest the viability to increase novelty and diversity with only a slight impact on relevance.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectTag Recommendation
dc.subjectRelevance
dc.subjectPersonalization
dc.subjectDiversity
dc.subjectNovelty
dc.titleRelevance, novelty, diversity and personalization in tag recommendation
dc.typeTese de Doutorado


Este ítem pertenece a la siguiente institución