dc.contributorRenato Vidal da Silva Martins
dc.contributorAndre Luis Contiero
dc.contributorMauricio Barros Correa Junior
dc.contributorDanielle Franco Nicolau Lara
dc.contributorEthan Guy Cotterill
dc.contributorSimone Marchesi
dc.creatorJairo Menezes e Souza
dc.date.accessioned2019-08-12T10:09:21Z
dc.date.accessioned2022-10-03T22:33:48Z
dc.date.available2019-08-12T10:09:21Z
dc.date.available2022-10-03T22:33:48Z
dc.date.created2019-08-12T10:09:21Z
dc.date.issued2017-10-27
dc.identifierhttp://hdl.handle.net/1843/EABA-ATDJTA
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3805385
dc.description.abstractLet C be an integral and projective curve; and let C' be its canonical model. We study the relation between the gonality of C and the dimension of a rational normal scroll S where C' can lie on. We are mainly interested in the case where C is singular, or even non-Gorenstein, in which case (...). We first analyze some properties of an inclusion (...) when it is induced by a pencil on C. Afterwards, in an opposite direction, weassume C' lies on a certain scroll, and check some properties C may satisfy, such as gonality and the kind of its singularities. At the end, we prove that a rational monomial curve C has gonality d if and only if C' lies on a (d -1)-fold scroll.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectmodelo canônico
dc.subjectscroll
dc.subjectcurva não-Gorenstein
dc.subjectgonalidade
dc.titleSobre gonalidade, modelos canônicos e scrolls
dc.typeTese de Doutorado


Este ítem pertenece a la siguiente institución