dc.contributorArmando Gil Magalhães Neves
dc.contributorhttp://lattes.cnpq.br/5547231293179604
dc.contributorCarlos Henrique Costa Moreira
dc.contributorEliza Maria Ferreira
dc.contributorJorge Guerra Pires
dc.creatorEvandro Pereira de Souza
dc.date.accessioned2022-08-03T15:51:02Z
dc.date.accessioned2022-10-03T22:33:23Z
dc.date.available2022-08-03T15:51:02Z
dc.date.available2022-10-03T22:33:23Z
dc.date.created2022-08-03T15:51:02Z
dc.date.issued2019-03-14
dc.identifierhttp://hdl.handle.net/1843/43920
dc.identifier0000-0002-1384-5462
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3805218
dc.description.abstractWe discuss the Moran process [10]: a stochastic model developed in 1958 for the genetic evolution of a haploid population with asexual reproduction, assuming no mutations, and fixed finite size. In this work, we deal with two extensions of this process: in Evolutionary Game Theory and in Evolutionary Graph Theory. In the context of game theory, Taylor et al. [14] present a classification of the evolutionary scenarios for the Moran process with two strategies. We briefly study this classification and the characteristic shapes for the graph of the fixation probability for each evolutionary scenario. We also analyze the behavior of fixation probability when the population size tends to infinity. In the context of Evolutionary Graph Theory, we discuss some of the results published in [9] and [2]. In particular, we generalize for the case of frequency dependent fitnesses and unifying the BD (birthdeath) and DB (death-birth) cases the solution found by Broom and Rychtár for the Moran process in the star graph. Finally, we also make some considerations on the asymptotic behavior of the solution that we present.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightshttp://creativecommons.org/licenses/by/3.0/pt/
dc.rightsAcesso Aberto
dc.subjectCadeias de Markov
dc.subjectProcessos de Nascimento e Morte
dc.subjectTeoria de Jogos Evolutivos
dc.subjectTeoria Evolutiva em Grafos
dc.subjectAnálise Assintótica
dc.titleUm estudo do processo evolutivo de Moran em grafos
dc.typeDissertação


Este ítem pertenece a la siguiente institución