dc.contributorAlberto Henrique Frade Laender
dc.contributorMarcos Andre Goncalves
dc.contributorNivio Ziviani
dc.contributorLeonardo Chaves Dutra da Rocha
dc.creatorGustavo Oliveira de Siqueira
dc.date.accessioned2019-08-14T03:34:29Z
dc.date.accessioned2022-10-03T22:32:57Z
dc.date.available2019-08-14T03:34:29Z
dc.date.available2022-10-03T22:32:57Z
dc.date.created2019-08-14T03:34:29Z
dc.date.issued2018-07-31
dc.identifierhttp://hdl.handle.net/1843/SLSC-BBZN36
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3805039
dc.description.abstractThroughout the history of science, different knowledge areas have collaborated to overcome major research challenges. The task of associating a researcher with such areas makes a series of tasks feasible such as the organization of digital repositories, expertise recommendation and the formation of research groups for complex problems. In this dissertation, we propose a simple yet effective automatic classification model that is capable of categorizing research expertise according to a hierarchical knowledge area classification scheme. Our proposal relies on discriminatory evidence provided by the title of academic works, which is the minimum information capable of relating a researcher to its knowledge area. Our experiments show that using supervised machine learning methods, trained with manually labeled information, it is possible to produce effective classification models.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectSupervised Learning
dc.subjectComputer Science Thesis
dc.subjectMachine Learning
dc.subjectResearchers Categorization
dc.titleHierarchical Categorization of Research Expertise in the Presence of Scarce Information
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución