dc.contributorEmerson Alves Mendonça de Abreu
dc.contributorhttp://lattes.cnpq.br/0989407026771712
dc.contributorEveraldo Souto de Medeiros
dc.contributorMarcos da Silva Montenegro
dc.creatorMarta Nascimento Menezes
dc.date.accessioned2022-01-08T03:06:04Z
dc.date.accessioned2022-10-03T22:32:44Z
dc.date.available2022-01-08T03:06:04Z
dc.date.available2022-10-03T22:32:44Z
dc.date.created2022-01-08T03:06:04Z
dc.date.issued2020-02-20
dc.identifierhttp://hdl.handle.net/1843/39047
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3804957
dc.description.abstractWe consider the monomial weight |x_1|^{A_1}...|x_n|^{A_n} in R^n, where A_i ≥ 0 is a real number for each i = 1, ..., n, and we present the isoperimetric, Sobolev, Morrey, and Trudinger-Moser inequalities involving this weight. They are the analogue of the classical ones with the Lebesgue measure dx replaced by |x_1|^{A_1}...|x_n|^{A_n}dx. For the isoperimetric and Sobolev inequalities, we describe the best constant and the extremal functions.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectDesigualdade de Sobolev com peso
dc.subjectDesigualdades isoperimétricas comuma densidade
dc.subjectPeso monomial
dc.titleDesigualdades isoperimétricas com pesos monomiais
dc.typeDissertação


Este ítem pertenece a la siguiente institución