Tese de Doutorado
Estudo termofluidodinâmico de reatores nucleares avançados de alta temperatura utilizando o RELAP5-3D
Fecha
2017-05-19Autor
Maria Elizabeth Scari
Institución
Resumen
Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF2, the LiF-BeF2, also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO (Tristructural-isotropic) particles. They also use graphit as moderator. The results of the thermal analysis obtained in this work demonstrated the ability of the RELAP5-3D code to reproduce the behavior of the simulated core reactors. Thus, this study adds knowledge to the several researches that have been carried out on the thermal hydraulic analysis of these new systems, searching for models capable of reproducing their thermal behavior, especially in cases of transient situations or accident. This tesis present new studies, especially detailed investigation on the heat transfer across the fuel.