dc.contributor | Renato Vidal da Silva Martins | |
dc.contributor | http://lattes.cnpq.br/3816641521470435 | |
dc.contributor | Arturo Ulises Fernandez Perez | |
dc.contributor | Cícero Fernandes de Carvalho | |
dc.contributor | Danielle Franco Nicolau | |
dc.contributor | Ethan Guy Cotterill | |
dc.contributor | Marcelo Escudeiro Hernandes | |
dc.creator | Naamã Galdino da Silva Neris | |
dc.date.accessioned | 2021-12-17T20:52:12Z | |
dc.date.accessioned | 2022-10-03T22:26:31Z | |
dc.date.available | 2021-12-17T20:52:12Z | |
dc.date.available | 2022-10-03T22:26:31Z | |
dc.date.created | 2021-12-17T20:52:12Z | |
dc.date.issued | 2021-07-29 | |
dc.identifier | http://hdl.handle.net/1843/38882 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3802378 | |
dc.description.abstract | The main goal of this work is the study of the gonality of a curve C. First, in the case where C is not isomorphic to its canonical model C", or equivalently, its dualizing sheaf is just torsion free. This is the case said non Gorenstein, where C" plays the role of a canonical curve. We classify such curves up to genus 5 by means of more general families of curves of arbitrary genus. In the case above, we also study its canonical model. Afterwards, we describe unicuspidal rational curves of genus 5 with hyperelliptic singularities in terms of its gonality. In conclusion, we analyze an upper bound for this invariant for Gorenstein unicuspidal curves. | |
dc.publisher | Universidade Federal de Minas Gerais | |
dc.publisher | Brasil | |
dc.publisher | ICX - DEPARTAMENTO DE MATEMÁTICA | |
dc.publisher | Programa de Pós-Graduação em Matemática | |
dc.publisher | UFMG | |
dc.rights | Acesso Aberto | |
dc.subject | Gonalidade | |
dc.subject | Modelo Canônico | |
dc.subject | Curva não Gorenstein | |
dc.subject | Curva Gorenstein | |
dc.title | Gonalidade e Modelos Canônicos de Curvas Racionais Unicuspidais | |
dc.type | Tese | |