dc.contributorRenato Vidal da Silva Martins
dc.contributorhttp://lattes.cnpq.br/3816641521470435
dc.contributorArturo Ulises Fernandez Perez
dc.contributorCícero Fernandes de Carvalho
dc.contributorDanielle Franco Nicolau
dc.contributorEthan Guy Cotterill
dc.contributorMarcelo Escudeiro Hernandes
dc.creatorNaamã Galdino da Silva Neris
dc.date.accessioned2021-12-17T20:52:12Z
dc.date.accessioned2022-10-03T22:26:31Z
dc.date.available2021-12-17T20:52:12Z
dc.date.available2022-10-03T22:26:31Z
dc.date.created2021-12-17T20:52:12Z
dc.date.issued2021-07-29
dc.identifierhttp://hdl.handle.net/1843/38882
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3802378
dc.description.abstractThe main goal of this work is the study of the gonality of a curve C. First, in the case where C is not isomorphic to its canonical model C", or equivalently, its dualizing sheaf is just torsion free. This is the case said non Gorenstein, where C" plays the role of a canonical curve. We classify such curves up to genus 5 by means of more general families of curves of arbitrary genus. In the case above, we also study its canonical model. Afterwards, we describe unicuspidal rational curves of genus 5 with hyperelliptic singularities in terms of its gonality. In conclusion, we analyze an upper bound for this invariant for Gorenstein unicuspidal curves.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectGonalidade
dc.subjectModelo Canônico
dc.subjectCurva não Gorenstein
dc.subjectCurva Gorenstein
dc.titleGonalidade e Modelos Canônicos de Curvas Racionais Unicuspidais
dc.typeTese


Este ítem pertenece a la siguiente institución