dc.contributorRosangela Helena Loschi
dc.contributorhttp://lattes.cnpq.br/8443300958745785
dc.contributorMarcos Oliveira Prates
dc.contributorCristiano de Carvalho Santos
dc.contributorManuel Jesus Galea Rojas
dc.creatorCarla Paula Moreira Soares
dc.date.accessioned2021-06-23T15:53:57Z
dc.date.accessioned2022-10-03T22:24:25Z
dc.date.available2021-06-23T15:53:57Z
dc.date.available2022-10-03T22:24:25Z
dc.date.created2021-06-23T15:53:57Z
dc.date.issued2020-11-06
dc.identifierhttp://hdl.handle.net/1843/36547
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3801542
dc.description.abstractIn linear regression models with measurement errors it is usually common that the assumption of symmetric normal distribution for measurement error is not the most adequate for the data at hand. This can be evidenced in cases where the measurement error presents have behavior that does not coincide with those of different population subgroups. This work proposes a finite mixture distribution of skew-normal with a mass point at zero. This distribution allows flexibility in errors, accommodating both symmetry and asymmetry in the same. To carry out Bayesian inference, an algorithm of the type Gibbs with Metropolis-Hasting step is developed. To evaluate the performance of the estimates, a simulation study is presented with different symmetries and asymmetries in the measurement error and applied to a real data set.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE ESTATÍSTICA
dc.publisherPrograma de Pós-Graduação em Estatística
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectErro de medida
dc.subjectMistura Finita
dc.subjectRegressão Linear
dc.subjectInferência Bayesiana
dc.titleUma abordagem via mistura finita para modelos de regressão linear com erro nas variáveis
dc.typeDissertação


Este ítem pertenece a la siguiente institución