Brasil | Dissertação de Mestrado
dc.contributorRodney Josue Biezuner
dc.contributorEmerson Alves Mendonça de Abreu
dc.contributorEzequiel Rodrigues Barbosa
dc.creatorSantos Francisco Quezada Castillo
dc.date.accessioned2019-08-13T18:38:00Z
dc.date.accessioned2022-10-03T22:18:11Z
dc.date.available2019-08-13T18:38:00Z
dc.date.available2022-10-03T22:18:11Z
dc.date.created2019-08-13T18:38:00Z
dc.date.issued2016-11-29
dc.identifierhttp://hdl.handle.net/1843/EABA-AGLJ7Q
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3798654
dc.description.abstractThe aim of this dissertation is to study the existence and uniqueness of viscosity solutions of the eikonal equation where the is a bounded open subset of a riemannian manifold M. For this, firstly, We present some basic notions such as: Banach-Finsler Manifolds and uniformly bumpable Finsler manifold. Moreover, we present a detailed proof that every Finsler manifold in the sense of Neeb-Upmaier K-weak uniform (in particular, every riemannian manifold) is uniformly bumpable, as discussed by Jiménez and Sanchez [11]. Next, we study the notions of subdierential calculus in riemannian manifolds and we present a detailed proof of some results obtained by Azagra, Ferrera and López [1], among which the smooth variational principle on riemannian manifolds, the perturbed minimization principle for the difference of two functions and the Deville's mean value inequality. Finally, we apply these results to show existence and uniqueness of viscosity solutions to eikonal equation.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectSubdiferencial
dc.subjectVariedade Riemanniana
dc.subjectVariedades Finsler
dc.subjectuniformemente bumpable
dc.subjectSolução de viscosidade
dc.subjectEquação eikonal
dc.titleSolução de viscosidade da equação eikonal em variedades Riemannianas
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución