dc.contributorAna Cristina Vieira
dc.contributorhttp://lattes.cnpq.br/3170214917043916
dc.contributorRafael Bezerra dos Santos
dc.contributorAntonio Ioppolo
dc.contributorDaniela La Mattina
dc.contributorDiogo Diniz Pereira da Silva e Silva
dc.contributorViviane Ribeiro Tomaz da Silva
dc.creatorMaria Luiza Oliveira Santos
dc.date.accessioned2021-06-02T15:21:19Z
dc.date.accessioned2022-10-03T22:16:38Z
dc.date.available2021-06-02T15:21:19Z
dc.date.available2022-10-03T22:16:38Z
dc.date.created2021-06-02T15:21:19Z
dc.date.issued2021-03-19
dc.identifierhttp://hdl.handle.net/1843/36250
dc.identifierhttps://orcid.org/0000-0002-7721-5849
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3797923
dc.description.abstractLet V be a variety of superalgebras with graded involution and let $\{\cgri(v)\}_{n\geq 1}$ be its sequence of *-graded codimensions. We say that V has polynomial growth $n^k$ if asymptotically $\cgri(V)\approx an^k$, for some $a\ne 0$. Furthermore, V is minimal of polynomial growth $n^k$ if $\cgri(V)$ grows as $n^k$ and any proper subvariety of V has polynomial growth $n^t$, with $t<k$. In this thesis we present the classification of minimal varieties of superalgebras with graded involution with quadratic growth, by giving a complete list of 36 finite dimensional superalgebras with graded involution which generate, up to equivalence, the only minimal varieties of quadratic growth. The 36 superalgebras with graded involution presented here form the smallest list of algebras that should be excluded from a variety V in order to conclude that V has at most linear growth. We emphasize that among these algebras, 16 are presented in an unprecedented way in this work.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.rightsAcesso Aberto
dc.subjectIdentidade polinomial
dc.subjectCrescimento das codimensões
dc.subjectSuperálgebra
dc.subjectÁlgebra com involução
dc.subjectVariedade minimal
dc.titleSuperálgebras com involução graduada: classificação das variedades minimais de crescimento quadrático
dc.typeTese


Este ítem pertenece a la siguiente institución