dc.contributorEzequiel Rodrigues Barbosa
dc.contributorRodney Josue Biezuner
dc.contributorEmerson Alves Mendonça de Abreu
dc.contributorLevi Lopes de Lima
dc.contributorSérgio de Moura Almaraz
dc.creatorAdson Martins Meira
dc.date.accessioned2019-08-12T22:00:39Z
dc.date.accessioned2022-10-03T22:14:59Z
dc.date.available2019-08-12T22:00:39Z
dc.date.available2022-10-03T22:14:59Z
dc.date.created2019-08-12T22:00:39Z
dc.date.issued2015-06-24
dc.identifierhttp://hdl.handle.net/1843/EABA-9XUPSL
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3797090
dc.description.abstractWe'll proof the Positive Mass Theorem, non negativity and rigidity, for graphical hypersurfaces, of the Euclidean Space, with non compact boundary. Supposing spherically symmetric graphical, we'll verify that the mass will keep non negative even without assuming scalar curvature non negative, and we'll verify that the rigidity of the null mass is stable. Under additional hypothesis, we'll obtain the Penrose's Inequality for suchgraphical hypersurfaces with non compact boundary. Finally, we'll obtain a theorem of rigidity for volume-minimizing semi-Einstein hypersurfaces, wich is a generalization of the Bray-Brendle-Neves' Theorem, [8], and Barros et al., [5].
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.titleTeorema da massa positiva e desigualdade de Penrose para gráficos com bordo não compacto e o teorema de rigidez para hiperfícies semi-Einstein minimizantes de volume
dc.typeTese de Doutorado


Este ítem pertenece a la siguiente institución