dc.contributorViviane Ribeiro Tomaz da Silva
dc.contributorAna Cristina Vieira
dc.contributorThiago Castilho de Mello
dc.creatorMarcos Antonio da Silva Pinto
dc.date.accessioned2019-08-11T20:54:10Z
dc.date.accessioned2022-10-03T22:14:26Z
dc.date.available2019-08-11T20:54:10Z
dc.date.available2022-10-03T22:14:26Z
dc.date.created2019-08-11T20:54:10Z
dc.date.issued2016-08-29
dc.identifierhttp://hdl.handle.net/1843/EABA-AGDNTF
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3796800
dc.description.abstractDrensky, in the 1980s, conjectured that a variety of algebras V is minimal if and only if Id(V) is a product of verbally prime T-ideals. Giambruno and Zaicev, in 2003, proved that conjecture and presented a classification of minimal varieties having exponential growth. The main goal of this dissertation is to show this classification establishing interesting relations between minimal superalgebras, minimal varieties and verbally prime T-ideals. We will also see relevant results that relate the finite dimensional superalgebras to the minimal ones. It is noteworthy that in order to prove our main result, we work with important concepts of the PI-theory, including the Grassmann envelope and the superenvelope of a superalgebra. We finish the dissertation with a brief discussion concerning the minimal supervarieties.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectvariedades minimais
dc.titleSuperálgebras minimais e a classificação das variedades minimais de crescimento exponencial
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución