dc.creatorBuena Maizon, Héctor
dc.creatorBarrantes, Francisco José
dc.date.accessioned2022-06-07T13:52:38Z
dc.date.accessioned2022-09-29T16:43:12Z
dc.date.available2022-06-07T13:52:38Z
dc.date.available2022-09-29T16:43:12Z
dc.date.created2022-06-07T13:52:38Z
dc.date.issued2022
dc.identifierBuena Maizon, H., Barrantes, F. J. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor [en línea]. Briefings in Bioinformatics. 2022, 23 (1). doi: https://doi.org/10.1093/bib/bbab435. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14114
dc.identifier1477-4054 (online)
dc.identifierhttps://repositorio.uca.edu.ar/handle/123456789/14114
dc.identifier10.1093/bib/bbab435
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3794425
dc.description.abstractAbstract: We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor’s translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
dc.languageeng
dc.publisherOxford University Press
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAcceso restringido
dc.sourceBriefings in Bioinformatics Vol.23, No.1, 2022
dc.subjectINTELIGENCIA ARTIFICIAL
dc.subjectAPRENDIZAJE AUTOMÁTICO
dc.subjectAPRENDIZAJE PROFUNDO
dc.subjectPROTEÍNA DE MEMBRANA
dc.subjectRECEPTOR DE NEUROTRANSMISORES
dc.subjectRECEPTOR DE ACETILCOLINA
dc.subjectCOLESTEROL
dc.subjectSEGUIMIENTO DE PARTÍCULAS INDIVIDUALES
dc.subjectMICROSCOPÍA DE SUPERRESOLUCIÓN
dc.titleA deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución