dc.creatorZanardi, María Marta
dc.creatorSarotti, Ariel M.
dc.date2021-05-03T14:16:10Z
dc.date2021-05-03T14:16:10Z
dc.date2015
dc.identifierZanardi, M.M., Sarotti, A.M. GIAO C−H COSY simulations merged with artificial neural networks pattern recognition analysis: pushing the structural validation a step forward [en línea]. The Journal of Organic Chemistry. 2015 (80). Disponible en: https://repositorio.uca.edu.ar/handle/123456789/11469
dc.identifier1520-6904
dc.identifier1520-6904 (Online)
dc.identifierhttps://repositorio.uca.edu.ar/handle/123456789/11469
dc.identifier10.1021/acs.joc.5b01663
dc.descriptionAbstract: The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C−H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.
dc.formatapplication/pdf
dc.languageeng
dc.publisherACS Publications
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceThe Journal of Organic Chemistry Vol.80, 2015
dc.subjectESTRUCTURA QUIMICA
dc.subjectESTRUCTURA MOLECULAR
dc.subjectQUIMICA TEORICA Y COMPUTACIONAL
dc.subjectCALCULOS QUIMICOS
dc.titleGIAO C−H COSY simulations merged with artificial neural networks pattern recognition analysis: pushing the structural validation a step forward
dc.typeArtículo


Este ítem pertenece a la siguiente institución