dc.creatorBottesi, Federico L.
dc.creatorZemba, Guillermo Raúl
dc.date.accessioned2019-06-06T00:48:31Z
dc.date.accessioned2022-09-29T16:23:18Z
dc.date.available2019-06-06T00:48:31Z
dc.date.available2022-09-29T16:23:18Z
dc.date.created2019-06-06T00:48:31Z
dc.date.issued2008
dc.identifierBottesi FL, Zemba GR. Mott transition and integrable lattice models in two dimensions [en línea]. Documento de trabajo publicado en arXiv.org. 2008. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/5494
dc.identifierhttps://repositorio.uca.edu.ar/handle/123456789/5494
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3786689
dc.description.abstractAbstract: We describe the two-dimensional Mott transition in a Hubbard-like model with nearest neighbors interactions based on a recent solution to the Zamolodchikov tetrahedron equation, which extends the notion of integrability to two-dimensional lattice systems. At the Mott transition, we find that the system is in a d-density wave or staggered flux phase that can be described by a double Chern Simons effective theory with symmetry su(2)1 xsu(2)1. The Mott transition is of topological nature, characterized by the emergence of vortices in antiferromagnetic arrays interacting strongly with the electric charges and an electric-magnetic duality. We also consider the effect of small doping on this theory and show that it leads to a quantum gas-liquid coexistence phase, which belongs to the Ising universality class and which is consistent with several experimental observations.
dc.languageeng
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsAcceso Abierto
dc.subjectTRANSICION DE MOTT
dc.subjectMATRICES DE INTERACCION ANTIFERROMAGNETICAS
dc.subjectECUACION DE ZAMOLODCHIKOV
dc.subjectMODELO DE ISING
dc.subjectTEORIA DE CHERN SIMONS
dc.subjectFISICA
dc.titleMott transition and integrable lattice models in two dimensions
dc.typeDocumentos de trabajo


Este ítem pertenece a la siguiente institución