Flight simulators: a review
Simuladores de vuelo: una revisión;
simuladores de vôo: uma revisão
dc.creator | Villamil Rico, Luis Carlos | |
dc.creator | Avella Rodríguez, Edna Joydeth | |
dc.creator | Tenorio Melo, Jorge Antonio | |
dc.date.accessioned | 2021-06-17T12:59:40Z | |
dc.date.accessioned | 2022-09-29T15:45:50Z | |
dc.date.available | 2021-06-17T12:59:40Z | |
dc.date.available | 2022-09-29T15:45:50Z | |
dc.date.created | 2021-06-17T12:59:40Z | |
dc.identifier | https://hdl.handle.net/20.500.12963/287 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3781952 | |
dc.publisher | Escuela de Postgrados de la Fuerza Aérea Colombiana | |
dc.relation | https://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/606/827 | |
dc.relation | https://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/606/844 | |
dc.relation | /*ref*/Aeronáutica Civil. (2015). RAC 24 Dispositivos simuladores para entrenemiento de vuelo. Recuperado de http://www.aerocivil.gov.co/AAeronautica/Rrglamentacion/RAC/Paginas/Inicio.aspx | |
dc.relation | /*ref*/Aerosimulators. (2009). Flight Training. Recuperado de http://www.superjetinternational.com/media-center/ssj100-fullflight-simulator-in-venice-achieves-easa-certification/ | |
dc.relation | /*ref*/Aguirre, L., y Guarnizo R., J. (2008). Diseño detallado de un simulador de vuelo dinamico. Bogota D. C.: Universidad de San Buenaventura. | |
dc.relation | /*ref*/Airbus Helicopters. (2015). Dauphin AS365 N3 / N3+ Full Fligh Simulator. Recuperado de https://www.airbushelicopters.com/website/en/press/Realistic%20simulation%20training%20to%20enhance%20safety%20and%20capabilities%20of%20helicopter%20search%20and%20rescue%20missions_1651.html | |
dc.relation | /*ref*/Allerton, D. J. (2010). The impact of flight simulatión inaerospace. Recuperado de https://www.aerosociety.com/Assets/Docs/Publications/DiscussionPapers/The_impact_of_flight_simulation_in_aerospace.pdf https://doi.org/10.1017/S0001924000004231 | |
dc.relation | /*ref*/Almeida, D. (2007). UAV Flight Simulator based on ESA Infrastructure Flight simulation models compliant with SMP standard. Lisboa, Portugal: Universidad Técnica de Lisboa. | |
dc.relation | /*ref*/Alonso, M. (2006). Diseño de una cabina de vuelo virtual. Barcelona: Universidad Politecnica de Catalunya. | |
dc.relation | /*ref*/Alonso, M. S. (2006). Diseño de una cabina virtual. España: Universidad Politécnica de Cataluña. | |
dc.relation | /*ref*/Angelo, J. (2000). The link flight trainer. ASME Landmarks, 12. | |
dc.relation | /*ref*/Australian Goverment Civil Aviation Safety Authority. (2015). Flight simulators and training devices. Australia: AGCASA. | |
dc.relation | /*ref*/Barros dos Santos, S., & Oliveira, F. (2011). Longitudinal autopilot controllers test platform hardware in the loop. IEEE International System Conference, 379-386. https://doi.org/10.1109/SYSCON.2011.5929071 | |
dc.relation | /*ref*/Bernard, M. (October, 2012). Real learning throught flight simulatión: The ABcs of ATDs. FAA Saf. Brief, 8-10. | |
dc.relation | /*ref*/Bosh, M. T. (2011). Diseño de un simulador de helicóptero. España: Universidad Politécnica de Cataluña. | |
dc.relation | /*ref*/Chih-Hsien, K., Devaney, J., & Chung-Ming, H. (s.f.). The design of a fuzzy-based adaptive digital controller for a three-degreesof- freedom in-parallel actuated manipulator [for flight simulator]. IEEE, 3, 1328-1332. | |
dc.relation | /*ref*/Chomachar, A. A., & Azizi, S. (2015). Design of nonlinear control loader system for a flight simulator (a dynamic inversion approach. IEEE, 1-11. | |
dc.relation | /*ref*/Cristofaro, M. (2014). Elements of computational flight dynamics for complete aircraft. Southampton. UK: University of Southampton. | |
dc.relation | /*ref*/Davliakos, I., & Papadopoulos, E. (2008). Model-based control of a 6-dof electrohydraulic Stewart-Gough platform,. Mech. Mach. Theory, 43(11), 1385-1400. https://doi.org/10.1016/j.mechmachtheory.2007.12.002 | |
dc.relation | /*ref*/Dongsu, W., & Hongbin, G. (2007). Adaptive sliding control of six- DOF flight simulator motion platform. Chinese J. Aeronaut, 20(5), 425-433. https://doi.org/10.1016/S1000-9361(07)60064-8 | |
dc.relation | /*ref*/Dongsu, W., & Hongbin, G. (October, 2007). Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform. Chinese Aeronaut, 20(5), 294-304. https://doi.org/10.1016/S1000-9361(07)60064-8 | |
dc.relation | /*ref*/Dongsu, W., Hongbin, G., & Peng, L. (2009). Comparative study on dynamic identification of parallel motion platform for a novel flight simulator. IEEE, 2232-2237. | |
dc.relation | /*ref*/Dummer, G. (1949). Aids to training, the design of radar synthetic training devices for the R.A.F. Proc IEE - Part III Radio Commun, 96(40), 101-115. https://doi.org/10.1049/pi-3.1949.0021 | |
dc.relation | /*ref*/EASA. (1 de octubre de 2015). EASA Qualifed FSRDs. Recuperado de https://lisstdis.easa.europa.eu/eqstdis | |
dc.relation | /*ref*/Education IT. (2017). Sistemas operativos más usados. Centro de capacitación y desarrollo profesional. | |
dc.relation | /*ref*/Elbit System Ltd. (2011). Aircraft Mission Training Center (MTC). | |
dc.relation | /*ref*/Federal Aviation Administration. (2014). AC 61-136A. Recuperado de https://www.faa.gov/search/?q=AC+61-136A+-+Federal+Aviation+Administration | |
dc.relation | /*ref*/Federal Aviation Administration. (2014). Training & Testing. Recuperado de https://www.faa.gov/training_testing/ | |
dc.relation | /*ref*/Flight Safety International Simulation. (2011). Flight Simulation Training Systems. Broken Arrow. | |
dc.relation | /*ref*/Fountain, P. J. (2002). USA Patente n.º US20030054324A1. | |
dc.relation | /*ref*/Gohl, F., & Leutenegger, S. (2009). Aerodynamic performance and stability simulation of different flying wing model airplane configurations. | |
dc.relation | /*ref*/Gusarov, R. (2011). Sukhoi SuperJet. Recuperado de http://www.ruaviation.com/news/2011/11/22/632/ | |
dc.relation | /*ref*/Haward, D. M. (1910). The Sanders "Teacher". Flight, II(50), 1006- 1007. Recuperado de https://www.flightglobal.com/pdfarchive/view/1910/1910%20-%201009.html | |
dc.relation | /*ref*/Inaba, Y., Shimada, Y., Uchiyama, K., Abe, K., Ishikawa, Y., Sugimoto, T., & Abe, A. (2006). Development of flight simulator for humanpowered aircraft the road towards a world record. Sice Icase. https://doi.org/10.1109/SICE.2006.314760 | |
dc.relation | /*ref*/Jirgl, M., Boni, J., & Jaolovecky, R. (2015). The identification possibilities of the measured parameters of an aircraft model and pilot behavior model on the flight simulator. IEEE Xplore, 1-5. https://doi.org/10.1109/MILTECHS.2015.7153726 | |
dc.relation | /*ref*/Koekebakker, S. (2001). Model Based Control of a Flight Simulator Motion System,. Netherlands: Technische Universiteit Deltf. | |
dc.relation | /*ref*/Kovacova, J., & Koblen, I. (2012). Selected information on flight simulators - main requirements, categories and their development, production and using for flight crew training in the both Slovak Republic and Czech Republic conditions. Incas Bulletin, 4, 73-86. https://doi.org/10.13111/2066-8201.2012.4.3.7 | |
dc.relation | /*ref*/Lawn, P. (1998). The Enhancement of a Flight Simulator System with Teaching and Research Applications. Texas: University Concordia. | |
dc.relation | /*ref*/Lawn, P. (1998). The enhancement of a flight simulator system with teaching and reserarch applications. Canada: University Montreal. | |
dc.relation | /*ref*/Marodi, A. (2002). An improved evaluation method for airplane simulator motion cueing. University of Pittsburgh. | |
dc.relation | /*ref*/Mendoza, M., Vivas, V., & Rodríguez, H. (2014). Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis. Journal of Applied Research and Technology, 12(3), 370-383. https://doi.org/10.1016/S1665-6423(14)71619-0 | |
dc.relation | /*ref*/Microsoft. (2015). Visual C# Language. Recuperado de https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework | |
dc.relation | /*ref*/Monsarrat, B., & Gosselin, M. (2003). Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism. IEEE, 19(6), 954-956. https://doi.org/10.1109/TRA.2003.819603 | |
dc.relation | /*ref*/Muñoz, M. (2012). Manuel de vuelo. Recuperado de www.manualdevuelo. com | |
dc.relation | /*ref*/NASA. (2012). SimLabs: Advancing the science of flight. Recuperado de http://www.simlabs.arc.nasa.gov | |
dc.relation | /*ref*/Odegard, R., Milenkovic, Z., & Buttacoli, M. (2014). Model-based GN&C simulation and flight software development for Orion missions beyond LEO. IEEE Aerospace Conference, 1-13. https://doi.org/10.1109/AERO.2014.6836230 | |
dc.relation | /*ref*/Odegard, R., Sliwinski, K., King, T., & Hart, J. (2011). Configuring the Orion Guidance, Navigation, and Control flight software for automated sequencing. IEEE Aerospace Conference, 1-13. https://doi.org/10.1109/AERO.2011.5747472 | |
dc.relation | /*ref*/Pancoe, E. G. (2002). Motión system for an aircraft flight shmulatur. | |
dc.relation | /*ref*/Pradipta, J., Klunder, M., Weickgenannt, M., & Sawodry, O. (2013). Development of a pneumatically driven flight simulator Stewart platform using motion and force control. IEEE. doi: 10.1109/AIM.2013.6584085. https://doi.org/10.1109/AIM.2013.6584085 | |
dc.relation | /*ref*/Ray, L. P. (2000). Brief history of flight simulation. SimTec, 11-17. | |
dc.relation | /*ref*/Reddy, B., & Arun, P. (2013). Development of real models for aircraft simulator. IEEE Xplore, 52-53. https://doi.org/10.1109/iMac4s.2013.6526383 | |
dc.relation | /*ref*/Reinholtz, K. (1999). Applying simulation to the development of spacecraft flight software. IEEE Aerospace Conference, 1, 469- 476. https://doi.org/10.1109/AERO.1999.794353 | |
dc.relation | /*ref*/Rodríguez, N. J. (2014). Generalidades de los simuladores de vuelo. Tecnoesufa, 21-28. | |
dc.relation | /*ref*/Rodríguez, R., Sampaio, R., Aguiar, A., & Buttacoli, M. (2014). FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance, Navigation and Contro. Joint Conference on Robotics, 223-228. https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.48 | |
dc.relation | /*ref*/Schmaltz, J. (2010). Flight training simulation. The flight safety multiplie, 21(4), 1-8. | |
dc.relation | /*ref*/Sizza, J. (2014). Simuladores para entrenamientos en la Fuerza Aérea Colombiana. Ciencia y Poder Aéreo, 9(1), 135-141. https://doi.org/10.18667/cienciaypoderaereo.142 | |
dc.relation | /*ref*/Slob, J. (2008). State-of-the-Art driving simulators, a literature survey. Eindhoven: University of Technology. | |
dc.relation | /*ref*/Songshan, H., Zongxia, W., & Yaoxing, S. (2015). Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator. Chinese J. Aeronaut, 28(1), 294-304. https://doi.org/10.1016/j.cja.2014.12.025 | |
dc.relation | /*ref*/Statcounter. (2017). Market Share Worldwide. Recuperado de https://statcounter.com/ | |
dc.relation | /*ref*/Tan, C., Chen, W., Van den Boomen, G., & Rauterberg, M. (2010). Application of automation for low cost aircraft cabin simulator. Control Autom Syst. | |
dc.relation | /*ref*/Virtual Insect Flight Simulator (VIFS): A software testbed for insect flight. (2001). Virtual insect flight simulator (VIFS): a software testIEEE International Conference on Robotics and Automation, 4, 3885-3892. | |
dc.relation | /*ref*/Vix. (2017). Vix.com. ¿Listo para despegar? Los mejores simuladores de vuelo civiles. Recuperado de https://www.vix.com/es/btg/gamer/62883/listo-para-despegar-los-mejores-simuladores-de-vuelo-civiles | |
dc.relation | /*ref*/Weingarten, N. (2005). History of in-flight simulation & flying qualities research at calspan. AIAA Journal of Aircraft, 42(2), 290- 298. https://doi.org/10.2514/1.4663 | |
dc.relation | /*ref*/X-plane. (2017). FAA-Certified X-Plane. Recuperado de https://www.x-plane.com/pro/certified/ | |
dc.relation | /*ref*/Zazula, A., Myszor, D., Antemijczuk, O., & Cyran, K. (2013). Flight simulators - From electromechanical analogue computers to moderm laboratory of flying. Adv. Sci. Techol, 7(17), 51-55. https://doi.org/10.5604/20804075.1036998 | |
dc.relation | /*ref*/Zhang, Y., & Yao, Y. (2009). Virtual insect flight simulator (VIFS): A software testbed for insect flight. International Conference on Measuring Technology and Mechatronics Automation, 841- 844. https://doi.org/10.1109/ICMTMA.2009.624 | |
dc.source | Ciencia y Poder Aéreo; Vol. 13 No. 2 (2018): July - December; 138-149 | |
dc.source | Ciencia y Poder Aéreo; Vol. 13 Núm. 2 (2018): Julio- Diciembre; 138-149 | |
dc.source | Ciencia y Poder Aéreo; v. 13 n. 2 (2018): Julho -Dezembro; 138-149 | |
dc.source | 2389-9468 | |
dc.source | 1909-7050 | |
dc.subject | aircraft | |
dc.subject | flight simulators | |
dc.subject | motion platforms | |
dc.subject | FSTD | |
dc.subject | FAA | |
dc.subject | EASA | |
dc.subject | aeronave | |
dc.subject | simuladores de vuelo | |
dc.subject | plataformas de movimiento | |
dc.subject | FSTD | |
dc.subject | FAA | |
dc.subject | EASA | |
dc.subject | aeronave | |
dc.subject | simuladores de vôo, | |
dc.subject | plataformas de movimento | |
dc.subject | FSTD | |
dc.subject | FAA | |
dc.subject | EASA | |
dc.title | Flight simulators: a review | |
dc.title | Simuladores de vuelo: una revisión | |
dc.title | simuladores de vôo: uma revisão | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |