dc.contributorPeralta Castilla, Arnaldo de Jesús
dc.creatorLópez Hernández, Ronny Javier
dc.date.accessioned2022-03-23T22:40:21Z
dc.date.accessioned2022-09-29T15:38:23Z
dc.date.available2022-03-23T22:40:21Z
dc.date.available2022-09-29T15:38:23Z
dc.date.created2022-03-23T22:40:21Z
dc.date.issued2018
dc.identifierhttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/346
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3781451
dc.languagespa
dc.publisherUniversidad de La Guajira
dc.publisherSUE CARIBE
dc.publisherDistrito Especial, Turístico y Cultural de Riohacha
dc.publisherMaestría en Ciencias Ambientales
dc.relationAngulo L. C., Huertas J. I., & R. G. M. (2011). Caracterización de Partículas Suspendidas (PST) y Partículas Respirables (PM10) producidas en Áreas de Explotación Carbonífera a Cielo Abierto. Informacion Tecnologica, 22(4), 23–34. https://doi.org/10.4067/S0718-07642011000400004
dc.relationArregoces, H. A., Rojano, R. E., Ângulo, L. C., & Restrepo, G. M. (2016). Predicción y Análisis de la Contribución de PM10desde Pilas de Carbón en una Mina a Cielo Abierto. Informacion Tecnologica, 27(4), 93–102. https://doi.org/10.4067/S0718-07642016000400010
dc.relationAshbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263–1270.
dc.relationBrunekreef, B., & Hoffmann, B. (2016). Air pollution and heart disease. The Lancet, 388(10045), 640–642. https://doi.org/10.1016/S0140-6736(16)30375-
dc.relationCarslaw, D. (2015). The openair manual open-source tools for analysing air pollution data. King’s College London, (January), 287.
dc.relationCarslaw, D. C., Beevers, S. D., Ropkins, K., & Bell, M. C. (2006). Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmospheric Environment, 40(28), 5424–5434. https://doi.org/10.1016/j.atmosenv.2006.04.062
dc.relationCerrejón. (2006). Sostenibilidad: comprometidos on el futuro, 187.
dc.relationCerrejón. (2007). Informe de sostenibilidad ambiental, 91.
dc.relationCerrejón. (2011). Resumen del Proyecto de Expansión Iiwo’uyaa para Grupos de Interés, 72.
dc.relationChow, J. C., & Watson, J. G. (1992). Fugitive Emissions Add to Air Pollution. Environmental Protection, 3(June), 26–31.
dc.relationDaniel A, V. (2008). Fundamentals od air pollution. (Elsevier Inc., Ed.). Retrieved from www.books.elsevier.com
dc.relationEPA. (1981). Overview of Receptor Model Application to Particulate Source Apportionment.
dc.relationEPA. (2001). Air Quality Criteria for Particulate Matter Air Quality Criteria for Particulate Matter. Environmental Protection, I, 632.
dc.relationEPA. (2017). LIST OF DESIGNATED REFERENCE AND EQUIVALENT METHODS. United States Environmental Protection Agency, 69. https://doi.org/10.1016/S0015-1882(99)80035-4
dc.relationGarcía Guadalupe, M., Ramírez Sánchez, H. U., Ulloa Godínez, H., Arias, S., & Pérez, A. (2012). Las inversiones térmicas y la contaminación atmosférica en la Zona Metropolitana de Guadalajara (México). Investigaciones Geográficas, (58), 9–29. https://doi.org/10.14198/INGEO2012.58.01
dc.relationGavriil, I., Grivas, G., Kassomenos, P., Chaloulakou, a, & Spyrellis, N. (2006). an Application of Theoretical Probability Distributions , To the Study of Pm 10 and Pm 2 . 5 Time Series in Athens , Greece, 8(3), 241–251.
dc.relationGhose, Mrinal K, B. S. . (2008). Analyzing Sources of Air Pollution with Factal Analysis: Case Study from a Coal Washery in India. Environmental Quality Management, 75–88. https://doi.org/10.1002/tqem
dc.relationGrange, S. K., Lewis, A. C., & Carslaw, D. C. (2016). Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmospheric Environment, 145, 128–134. https://doi.org/10.1016/j.atmosenv.2016.09.016
dc.relationHadley, M. B., Baumgartner, J., & Vedanthan, R. (2018). Developing a clinical approach to air pollution and cardiovascular health. Circulation, 137(7), 725–742. https://doi.org/10.1161/CIRCULATIONAHA.117.030377
dc.relationHopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255–265. https://doi.org/10.1002/cem.796
dc.relationIDEAM. (2017). Informe del estado de la calidad de aire en Colombia 2016. Bogotá.
dc.relationLippmann, M. (2009). Environmental Toxicants: Human Exposures and Their Health Effects. (L. Morton, Ed.), John Wiley & Sons, Inc (Third Edit). New Jersey: John Wiley & Sons, Inc., Hoboken. https://doi.org/10.1002/9780470442890
dc.relationMADS. (2010). Política de Prevención y Control de la Contaminación del Aire. Ministerio de Ambiente y Desarrollo Sostenible, 50.
dc.relationMinistrio de Ambiente y desarrollo sostenible. (2010). Resolución 650 del 29 de marzo de 2010, (650), 650.
dc.relationOrganización Mundial de la Salud. (2015). Salud y medio ambiente : Impacto sanitario de la contaminación del aire, 1, 1–8.
dc.relationOrgatization World Health. (2001). HUMAN EXPOSURE ASSESSMENT An Introduction. World Health Organization. World Health Organization.
dc.relationPandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5(1), 79–86. https://doi.org/10.5094/APR.2014.010
dc.relationPHILIP K, H. (1991). Receptor modeling for air quality management. Elsevier Science Publishers B.V (Vol. 7). Potsdam, New York. https://doi.org/10.1016/S0922-3487(08)70131-X
dc.relationPlaceres, M. R., Olite, F. D., & Toste, M. Á. (2006). La contaminación del aire: Su repercusión como problema de salud. Revista Cubana de Higiene y Epidemiologia, 44(2). https://doi.org/10.1027/1015-5759/a000030
dc.relationRogge, W. F., Hildemann, L. M., Marurek, M. A., & Cass, G. R. (2011). Sources of Fine Organic Aerosol. 1. Charbroilers and Meat Cooking Operations. Environmental Science and Technology, 22(4), 1112–1125. https://doi.org/10.1021/es00018a015
dc.relationSoo, J. C., Monaghan, K., Lee, T., Kashon, M., & Harper, M. (2016). Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Science and Technology, 50(1), 76–87. https://doi.org/10.1080/02786826.2015.1128525
dc.relationSostenible, M. de A. y D. (2017). Informe del estado de la calidad del aire en Colombia, 47.
dc.relationUria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivariate probability function for source identification. Environmental Modelling and Software, 59, 1–9. https://doi.org/10.1016/j.envsoft.2014.05.002
dc.relationWarneck, P. (1988). Chemistry of the Natural Atmosphere (Academic P). San Diego, California.
dc.relationWatson, J. G., & Chow, J. (1998). Guideline on speciated particulate monitoring. U.S. Environmental Protection Agency, (August), 3–2, 15–21. Retrieved from https://www3.epa.gov/ttn/amtic/files/ambient/pm25/spec/drispec.pdf
dc.relationWatson, J. G., & Chow, J. C. (2000). Reconciling Urban Fugitive Dust Emissions Inventory and Ambient Source Contribution Estimates: Summary of Current Knowledge and Needed Research. Energy and Environmental Engineering Center, (January 2000), 1–240. Retrieved from http://www.epa.gov/ttn/chief/efdocs/fugitivedust.pdf
dc.relationWilliam Malm, N. P. S. and C. S. I. for R. on the A. (2000). Introduction to Visibility, 1–79. Retrieved from http://www.epa.gov/visibility/what.html%5Cnpapers2://publication/uuid/C229704B-B8D1-4E4E-87D8-E6FBF22E9BF7
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsDerecho Reservados Universidad de La Guajira
dc.titleDeterminación de interacciones del flujo de aire y la contaminación por material particulado en zona minera a cielo abierto en el departamento de La Guajira, (Colombia) a través de función de probabilidad condicional
dc.typeTesis


Este ítem pertenece a la siguiente institución