dc.creatorUsuga, Olga
dc.creatorPatiño Rodríguez, Carmen
dc.creatorHernández Barajas, Freddy
dc.creatorUrrea Montoya, Amylkar
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:25Z
dc.date.accessioned2022-09-29T14:59:04Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:25Z
dc.date.available2022-09-29T14:59:04Z
dc.date.created2022-06-01 00:00:00
dc.date.created2022-06-17T20:21:25Z
dc.date.issued2022-06-01
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5166
dc.identifier10.24050/reia.v19i38.1526
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v19i38.1526
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3780707
dc.description.abstractEn algunas áreas de conocimiento se pueden presentar fenómenos que son representados por variables aleatorias negativas (ℝ-) ; contar con un modelo estadístico es crucial para representar esos fenómenos y explicarlos en función de otras variables auxiliares. En este trabajo se propone un modelo de regresión para el análisis de variables aleatorias negativas tomando como distribución para la variable respuesta la distribución Weibull reflejada. En este artículo reportamos el paquete RelDists creado en el lenguaje de programación R para facilitar el uso del modelo de regresión propuesto. Por medio de un estudio de simulación Monte Carlo se exploró el desempeño del proceso de estimación de parámetros. En el estudio de simulación se consideraron dos casos: sin covariables y con covariables. El primer caso se refiere a la situación en la cual sólo se tiene la variable respuesta y con ella se deben estimar los parámetros de la distribución. En el segundo caso se tiene la variable respuesta y variables explicativas que en conjunto se usan para estimar los parámetros del modelo de regresión. Adicionalmente, en el estudio de simulación se consideraron datos censurados y no censurados. Del estudio se encontró que el proceso de estimación logra estimar bien los parámetros del modelo a medida que el tamaño de la muestra aumenta y que el porcentaje de censura disminuye. En el artículo se muestra una aplicación del modelo propuesto usando datos experimentales provenientes de una prueba de contracción con probetas de concreto. En la aplicación se construyó un modelo para explicar la contracción de las probetas en función del tiempo. El modelo de regresión para variables aleatorias negativa y el paquete RelDists pueden ser usados por comunidades académicas, científicas y de negocios para el desarrollo de análisis de confiabilidad.
dc.description.abstractIn some areas of knowledge, we can find negative variables (ℝ-), to have a statistical model is crucial to represent the phenomenon and explain it using other variables. This paper proposes a regression model to analyze negative random variables using the reflected Weibull distribution. We developed the RelDists package in the R programming language to implement the proposed model. A Monte Carlo simulation study was conducted to explore the performance of the estimation procedure considering censored and uncensored data and the presence and absence of covariates. From the simulation study, we found that the estimation procedure achieves accurate estimations of the parameters as the sample size increases and the percentage of censoring decreases. In the paper, we present an application of the proposed model using experimental data from a compression test with concrete specimens. In the application, a model was fitted to explain the shrinkage strain using the variable time. The regression model for negative variables and the RelDists package can be used by academic, scientific, and business communities to perform reliability analysis.
dc.languageeng
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationAkaike, H. (1983). Information measures and model selection. Int Stat Inst, 44, 277–291.
dc.relationAl Abbasi, J. N., Risan, H. K., & Resen, I. A. (2018). Application of Kumaraswamy Extreme Values Distributions to Earthquake Magnitudes in Iraq and Conterminous Regions. International Journal of Applied Engineering Research, 13(11), 8971–8980.
dc.relationAli, M. M., & Woo, J. (2006). Skew-symmetric reflected distributions. Soochow Journal of Mathematics, 32(2), 233–240. https://doi.org/10.1080/01966324.2008.10737716
dc.relationAlmalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124(4), 32–55. https://doi.org/https://doi.org/10.1016/j.ress.2013.11.010
dc.relationBalakrishnan, N., & Kocherlakota, S. (1985). On the double Weibull distribution: order statistics and estimation. Sankhya: The Indian Journal of Statistics, Series B, 47(2), 161–178.
dc.relationBarreto-Souza, W., Santos, A. H. S., & Cordeiro, G. M. (2010). The beta generalized exponential distribution. Journal of Statistical Computation and Simulation, 80(2), 159–172. https://doi.org/10.1080/00949650802552402
dc.relationCaron, R., Sinha, D., Dey, D., & Polpo, A. (2017). Categorical data analysis using a skewed Weibull regression model. In arXiv (Vol. 20, Issue 3, pp. 176–193). Multidisciplinary Digital Publishing Institute. https://doi.org/https://doi.org/10.3390/e20030176
dc.relationCohen, A. C. (1975). Multi-censored sampling in the three parameter Weibull distribution. Technometrics, 17(3), 347–351. https://doi.org/https://doi.org/10.2307/1268072
dc.relationCohen, A. C. (2016). Truncated and censored samples: theory and applications. CRC press.
dc.relationCohen, C. A., & Whitten, B. (1982). Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theory and Methods, 11(23), 2631–2656. https://doi.org/https://doi.org/10.1080/03610928208828412
dc.relationDunn, P. K., & Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3), 236–244. https://doi.org/https://doi.org/10.2307/1390802
dc.relationGibbons, D. I., & Vance, L. C. (1983). Estimators for the 2-parameter Weibull distribution with progressively censored samples. IEEE Transactions on Reliability, 32(1), 95–99. https://doi.org/10.1109/TR.1983.5221484
dc.relationGuure, C. B., & Ibrahim, N. A. (2012). Bayesian analysis of the survival function and failure rate of Weibull distribution with censored data. Mathematical Problems in Engineering, 2012. https://doi.org/https://doi.org/10.1155/2012/329489
dc.relationGuure, C. B., & Ibrahim, N. A. (2013). Methods for estimating the 2-parameter Weibull distribution with type-I censored data. Research Journal of Applied Sciences, Engineering and Technology, 5(3), 689–694. https://doi.org/10.19026/rjaset.5.5010
dc.relationHernández, B. F., Cano, B. U., & Caicedo, E. A. C. (2021). Modelos GAMLSS para analizar el grado secado de calcio dihidratado. Revista EIA, 18(35), 1–13. https://doi.org/https://doi.org/10.24050/reia.v18i35.1439
dc.relationHuang, H., Garcia, R., Huang, S.-S., Guadagnini, M., & Pilakoutas, K. (2019). A practical creep model for concrete elements under eccentric compression. Materials and Structures, 52(6), 1–18. https://doi.org/10.1617/s11527-019-1432-z
dc.relationKalsoom, U., Nasir, W., & Syed, A. (2019). On estimation of reflected Weibull distribution using bayesian analysis under informative prior. 15th Islamic Countries Conference on Statistical Sciences (ICCS-15), 49.
dc.relationKim, C., Jung, J., & Chung, Y. (2011). Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring. Statistical Papers, 52(1), 53–70. https://doi.org/https://doi.org/10.1007/s00362-009-0203-2
dc.relationKim, J. S., & Yum, B.-J. (2008). Selection between Weibull and lognormal distributions: A comparative simulation study. Computational Statistics & Data Analysis, 53(2), 477–485. https://doi.org/https://doi.org/10.1016/j.csda.2008.08.012
dc.relationLai, C.-D. (2014). Generalized weibull distributions. Springer.
dc.relationLee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6(1), 173–186. https://doi.org/DOI: 10.22237/jmasm/1177992960
dc.relationMeeker, W. Q., & Escobar, L. A. (2014). Statistical methods for reliability data. John Wiley & Sons.
dc.relationModarres, M., Kaminskiy, M. P., & Krivtsov, V. (2016). Reliability engineering and risk analysis: a practical guide. CRC press.
dc.relationMorris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102. https://doi.org/https://doi.org/10.1002/sim.8086
dc.relationNagatsuka, H., Kamakura, T., & Balakrishnan, N. (2013). A consistent method of estimation for the three-parameter Weibull distribution. Computational Statistics & Data Analysis, 58(1), 210–226. https://doi.org/https://doi.org/10.1016/j.csda.2012.09.005
dc.relationNagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of Determination. Biometrika, 78(3), 691–692. https://doi.org/https://doi.org/10.1093/biomet/78.3.691
dc.relationOdell, P. M., Anderson, K. M., & D’Agostino, R. B. (1992). Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics, 48(3), 951–959.
dc.relationOrjubin, G. (2007). Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 49(1), 104–113. https://doi.org/10.1109/TEMC.2006.888172
dc.relationPhadnis, M. A., Sharma, P., Thewarapperuma, N., & Chalise, P. (2020). Assessing accuracy of Weibull shape parameter estimate from historical studies for subsequent sample size calculation in clinical trials with time-to-event outcome. Contemporary Clinical Trials Communications, 17(1). https://doi.org/10.1016/j.conctc.2020.100548
dc.relationR Core Team. (2021). R: A Language and Environment for Statistical Computing. https://www.r-project.org/
dc.relationRegal, R. R., & Larntz, K. (1978). Likelihood methods for testing group problem solving models with censored data. Psychometrika, 43(3), 353–366. https://doi.org/https://doi.org/10.1007/BF02293645
dc.relationRigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507–554. https://doi.org/https://doi.org/10.1111/j.1467-9876.2005.00510.x
dc.relationRoss, M. S. (2012). Simulation. Elsevier.
dc.relationSchwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
dc.relationStacy, E. W. (1962). A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.
dc.relationStasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V., & Bastiani, F. (2017). Flexible Regression and Smoothing Using GAMLSS in R. CRC Press.
dc.relationWei, Z., Start, M., Hamilton, J., & Luo, L. (2016). A unified framework for representing product validation testing methods and conducting reliability analysis. SAE International Journal of Materials and Manufacturing, 9(2), 303–314. https://doi.org/https://doi.org/10.4271/2016-01-0269
dc.relationXie, M., & Lai, C. D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 52(1), 87–93. https://doi.org/https://doi.org/10.1016/0951-8320(95)00149-2
dc.relationZhang, T., & Xie, M. (2007). Failure data analysis with extended Weibull distribution. Communications in Statistics—Simulation and Computation®, 36(3), 579–592. https://doi.org/https://doi.org/10.1080/03610910701236081
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1526/1454
dc.relationNúm. 38 , Año 2022 : .
dc.relation19
dc.relation38
dc.relation3806 pp. 1
dc.relation19
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2022
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1526
dc.subjectReflected Weibull
dc.subjectRegression model
dc.subjectGAMLSS
dc.subjectCompression test on concrete
dc.subjectconfiabilidad
dc.subjectdatos censurados
dc.subjectestimación de parámetros
dc.subjectGAMLSS
dc.subjectenguaje de programación R
dc.subjectmáxima verosimilitud
dc.subjectmodelo de regresión
dc.subjectprueba de contracción en concreto
dc.subjectvariable aleatoria negativa
dc.subjectWeibull reflejada
dc.titleModelo estadístico para el análisis de variables negativas con aplicación a pruebas de contracción en concreto
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución