dc.creatorViviescas, Álvaro
dc.creatorChio Cho, Gustavo
dc.creatorBegambre, Oscar
dc.creatorHernandez, Wilson
dc.creatorRiveros-Jerez, Carlos Alberto
dc.date.accessioned2020-06-21 00:00:00
dc.date.accessioned2022-06-17T20:20:16Z
dc.date.accessioned2022-09-29T14:56:29Z
dc.date.available2020-06-21 00:00:00
dc.date.available2022-06-17T20:20:16Z
dc.date.available2022-09-29T14:56:29Z
dc.date.created2020-06-21 00:00:00
dc.date.created2022-06-17T20:20:16Z
dc.date.issued2020-06-21
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5076
dc.identifier10.24050/reia.v17i34.1296
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v17i34.1296
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3779715
dc.description.abstractThis paper presents a comparative study of an Optimal Sensor Placement (OSP) implementation conducted in a box girder bridge using experimental and numerical mode shapes obtained at different construction stages. It is widely recognized that monitoring the dynamic response of bridges during different construction stages provides valuable information to adjust design considerations. Therefore, there is a need for the development of OSP implementations in order to find the optimal number of sensors needed for real applications. In the present study, an OPS method based on the maximization of the Fisher Information Matrix (FIM) is used. The use of experimentally derived and numerical based mode shapes is considered in the determination of the optimal sensor locations. Field testing results previously conducted before connecting the central segment of the main span are also included in this study. The asphalt pavement weight effect in OSP determination is also analyzed by considering field testing.
dc.description.abstractEste artículo presenta un estudio comparativo de óptima localización de sensores (OSP) realizado en un puente de viga cajón usando modos de vibración experimentales y numéricos obtenidos en diferentes estados de construcción del puente. Es ampliamente reconocido que el monitoreo de la respuesta dinámica de puentes durante diferentes estados de construcción provee información invaluable para ajustar las consideraciones de diseño. Por lo tanto, existe una necesidad de desarrollar estrategias para determinar la localización óptima de sensores (OSP, por sus siglas en inglés). En el presente estudio, un método OSP basado en la maximización de la matriz de información Fisher (FIM) es utilizado. El uso de modos de vibración derivados de forma experimental y numérica es considerado en la determinación las posiciones OSP. Resultados de pruebas de medición en campo ejecutadas antes de conectar la dovela central de la luz principal también se incluyen en este estudio. El peso de la carpeta asfáltica en la determinación de las posiciones OSP es también considerado en las pruebas de medición en campo.
dc.languagespa
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationBagheri, A., Alipour, M., Ozbulut, O., Harris, D. (2018). A nondestructive method for load rating of bridges without structural properties and plans. Engineering Structures, 171, pp. 545-556. Chang, M., Pakzad, S. (2014). Optimal sensor placement for modal identification of bridge systems considering number of sensing nodes. Journal of Bridge Engineering ASCE, 9(6):04014019. Chen, G-W., Omenzetter, P., Beskhyroun, S. (2017). Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations. Engineering Structures, 151, pp. 839-860. Costa, C., Ribeiro D., Jorge, P., Silva, R., Arêde, A., Calçada, R. (2016). Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 123, pp. 354-371. Hernandez, W., Viviescas, A., Riveros, C.A. Dynamic response assessment during the construction of a segmental bridge using finite element modeling and ambient vibration testing. Dyna, in Review. Kammer, D., Brillhart, R. (1996). Optimal sensor placement for modal identification using system-realization methods. Journal of Guidance, Control and Dynamics, 19, pp. 729-731. Kim, T., Youn, B., Oh, H. (2018). Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty. Mechanical Systems and Signal Processing, 111, pp. 615-627. Kinemetrics Inc. (2016). [On line]. [Last access: 19 April 2016]. Liu, K., Yang, R., Soares, C. (2018). Optimal sensor placement and assessment for modal identification. Ocean Engineering, 165, pp. 209-220. Meo, M., Zumpano, G. (2005). On the optimal sensor placement techniques for a bridge structure. Engineering Structures, 27, pp. 1488-1497. MIDAS Information Technology Co. Ltd. (2016). Midas User Manual, MIDAS Information Technology, Seongnam, South Korea. Prabhu, S., Atamturktur, S. (2013) Selection of Optimal Sensor Locations Based on Modified Effective Independence Method: Case Study on a Gothic Revival Cathedral. Journal of Architectural Engineering ASCE, 19(4), pp. 288-301. Riveros, C., García, E., Rivero, J. (2013). A comparative study of sensor placement techniques for structural damage detection. Revista EIA, 10, pp. 23-37. LANL/UCSD Engineering Institute. (2010). Structural Health Monitoring Tools (SHM Tools). Los Alamos national laboratory, US. Vicenzi, L., Simonini, L. (2017). Influence of model errors in optimal sensor placement. Journal of Sound and Vibration, 389, pp. 119-133.
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1296/1334
dc.relationNúm. 34 , Año 2020
dc.relation12
dc.relation34
dc.relation1
dc.relation17
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2020
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1296
dc.subjectBox girder bridge
dc.subjectoptimal sensor placement
dc.subjectFisher information matrix
dc.subjectmodal identification
dc.subjectfield testing.
dc.subjectPuente de viga cajón
dc.subjectóptima localización de sensores
dc.subjectmatriz de información Fisher
dc.subjectidentificación modal
dc.subjectpruebas de medición en campo
dc.titleOptimal Sensor Placement of a Box Girder Bridge Using Mode Shapes Obtained from Numerical Analysis and Field Testing
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución