dc.creatorPeña Lara, Diego
dc.creatorCorrea Gallego, Hernando
dc.creatorSuescún Diaz, Daniel
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:22Z
dc.date.accessioned2022-09-29T14:55:55Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:22Z
dc.date.available2022-09-29T14:55:55Z
dc.date.created2022-06-01 00:00:00
dc.date.created2022-06-17T20:21:22Z
dc.date.issued2022-06-01
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5162
dc.identifier10.24050/reia.v19i38.1517
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v19i38.1517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3779476
dc.description.abstractMidiendo la resistencia eléctrica del electrolito sólido NaI-AgI, se mostró que al adicionar NaI al AgI se estabiliza la transición de la fase conductora iónica (β-AgI) a la fase superiónica (α-AgI) a 420 K al incrementar la temperatura. La conductividad iónica en la transición β → α del AgI aumenta varios órdenes de magnitud. Para simular esta transición, se consideró un modelo fenomenológico basado en una densidad de energía libre, siendo la concentración de defectos en equilibrio (n) el parámetro de orden e interpretando éste como el inverso de la resistencia R. Los datos experimentales se ajustaron muy bien al modelo propuesto.
dc.description.abstractElectrical resistance measurements of NaI-AgI solid electrolyte showed that adding NaI to AgI stabilizes the transition from conducting ionic phase (β-AgI) to the superionic (α-AgI) at 420 K with increasing temperature. The ionic conductivity at the β → α transition of AgI increases by several orders of magnitude. Considering a phenomenological model based on a free energy density was fitted the abrupt jump of ionic conductivity. In this model, the equilibrium defect concentration (, R is the resistance) is the order parameter. Better results are achieved for the order parameter.
dc.languagespa
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationAgrawal, R. C. & Gupta, R. K., 1999. Review Superionic solids: composite electrolyte phase -an overview. J. Mat. Scie., Volume 34, p. 1131–1162. doi: 10.1023/A:1004598902146
dc.relationBurley, G., 1963. Polymorphism of silver iodide. American mineralogist. Volume 48, p. 1266–1276. https://pubs.geoscienceworld.org/ammin/article-pdf/48/11-12/1266/4254546/am-1963-1266.pdf
dc.relationChandra, A., 2014. Ion conduction in crystalline superionic solids and its applications. Eur. Phys. J. Appl. Phys., 66 (30905 (pp 21)). doi: 10.1051/epjap/2014130569
dc.relationChandra, S., 1981. Superionics Solids. Amsterdan: North-Holland.
dc.relationHuberman, A., 1974. Cooperative Phenomena in Solid Electrolytes. Phys. Rev. Lett., Volume 32, p. 1000–1002. doi 10.1103/PhysRevLett.32.1000. doi: 10.1103/PhysRevLett.32.1000
dc.relationMadden, P., O'Sullivan, K. F. & Chiarotti, G., 1992. Ordering of the silver ions in α-AgI: A mechanism for the α→β phase transition. Phy. Rev. B, 45(18), p. 10206–10212. doi: 10.1103/PhysRevB.45.10206
dc.relationRice, M. J., Strässler, S. & Toombs, G. A., 1974. Superionic Conductors: Theory of the Phase Transition to the Cation Disordered State. Phys. Rev. Lett., Volume 32, p. 596. doi: 10.1103/PhysRevLett.32.596
dc.relationRickert, H., 1978. Solid ionic conductors: principles and applications. Angew Chem Int Ed Engl, Volume 17, p. 37–46. doi: 10.1002/anie.197800371
dc.relationSiraj, K., 2012. Past, present and future of superionic conductors. Int. J. Nano Mater. Sci., Volume 1, pp. 1-20. https://www.researchgate.net/publication/235222104_Past_Present_and_Future_of_Superionic_Conductors Sunandana, C., 2016. Introduction to solid state ionics: phenomenology and applications. New York: CRC Press, Taylor & Francis.
dc.relationWelch, D. O. & Dienes, G. J., 1977. Phenomenological and microscopic models of sublattice disorder in ionic crystals -I Phenomenological models. J. Phys. Chem. Solids, Volume 38, p. 311–317.
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1517/1451
dc.relationNúm. 38 , Año 2022 : .
dc.relation10
dc.relation38
dc.relation3803 pp. 1
dc.relation19
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2022
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1517
dc.subjectPhase transitions
dc.subjectSilver iodide
dc.subjectIonic conductivity
dc.subjectSolid electrolyte
dc.subjectPhenomenological model
dc.subjectTransición de fases
dc.subjectYoduro de plata
dc.subjectConductividad iónica
dc.subjectElectrolito sólido
dc.subjectModelo fenomenológico
dc.titleModelamiento del salto del inverso de la resistencia del electrolito sólido NaI-AgI
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución