dc.creatorPardo Álvarez, Nicolás Steven
dc.creatorPenagos García, Guillermo León
dc.creatorLópez Gómez, María Esperanza
dc.creatorCorrea Ochoa, Mauricio Andrés
dc.date.accessioned2021-05-31 00:00:00
dc.date.accessioned2022-06-17T20:21:06Z
dc.date.accessioned2022-09-29T14:54:44Z
dc.date.available2021-05-31 00:00:00
dc.date.available2022-06-17T20:21:06Z
dc.date.available2022-09-29T14:54:44Z
dc.date.created2021-05-31 00:00:00
dc.date.created2022-06-17T20:21:06Z
dc.date.issued2021-05-31
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5139
dc.identifier10.24050/reia.v18i36.1476
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v18i36.1476
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3779021
dc.description.abstractLos residuos mineros (RM) generan grandes problemas ambientales debido a la alta y progresiva explotación de minerales y su consecuente disposición. La activación alcalina es un método ampliamente utilizado para la fabricación de materiales de construcción, usando los residuos como materiales cementantes suplementarios. En esta investigación se generaron morteros a partir de RM activados alcalinamente. Se estudiaron residuos de la explotación de minería aurífera de veta, activadas mediante una mezcla de solución NaOH y Na2SiO3. Se fabricaron dos tipos de morteros, uno utilizando el residuo con granulometría original y el otro con el residuo molido, para evaluar la influencia del tamaño de partícula. Además, cada tipo de mortero fue fraguado a 24 y 80 ºC. El análisis de las fases presentes en los morteros se llevó a cabo mediante difracción de rayos X (DRX) y el análisis de la morfología de las superficies de fractura después del ensayo de compresión se llevó a cabo mediante microscopía electrónica de barrido (MEB). Los resultados mostraron que la resistencia a la compresión es superior en los morteros preparados con los residuos molidos, frente a los morteros con los residuos de granulometría original. En adición, el incremento de la temperatura de fraguado no presentó influencia en la propiedad evaluada.
dc.description.abstractThe mine tailings cause several environmental impacts, due to high and progressive mineral exploitation and waste management. Alkaline activation to manufacture building materials using waste as supplementary cementitious materials has been a widely used method. In this article, mortars with alkali-activated mine tailings has been studied. Vein gold tailing wastes, were activated by a mixture of NaOH and Na2SiO3 solution. Two types of mortars were analyzed to assess influence of particle size were manufactured, the first by using original granulometry tailing and the second with milled residue. In addition, each type of mortar was set at 24 and 80 °C. Crystalline phases in mortars were identified by X-ray diffraction (XRD), and the morphology of the fracture surfaces after the compression test was analyzed with scanning electron microscopy (SEM). The results show that the compressive strength of the specimens produced from milled residue was higher value in comparison with original granulometry specimens. In addition, setting temperature increase did not have an influence on the property evaluated.
dc.languagespa
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationAl-Shathr, B.; Shamsa, M.; Al-Attar, T. (2018). Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web of Conferences, 162, 02019. https://doi.org/10.1051/matecconf/201816202019
dc.relationASTM C109/C109M - 16a. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)1. https://doi.org/10.1520/C0109
dc.relationASTM C33/C33M-18. (2018). Standard Specification for Concrete Aggregates. https://doi.org/10.1520/C0033
dc.relationASTM D422-63. (2007). Standard test method for particle-size analysis of soils. https://doi.org/10.1520/D0422-63R07E02.2
dc.relationComisión Asesora Permanente Para el Regimen de Construcciones Sismo Resistentes. (2010). NSR-10. Reglamento Colombiano de Construcción Sismo Resistente NSR-10, Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
dc.relationConsoli, N. C.; Da Silva, A. P.; Nierwinski, H. P.; Sosnoski, J. (2018). Durability, strength, and stiffness of compacted gold tailings – cement mixes. Canadian Geotechnical Journal, 55(4), 486–494. https://doi.org/10.1139/cgj-2016-0391
dc.relationDe Rossi, A.; Simão, L.; Ribeiro, M. J.; Novais, R. M.; Labrincha, J. A.; Hotza, D.; Moreira, R. (2019). In-situ synthesis of zeolites by geopolymerization of biomass fly ash and metakaolin. Materials Letters, 236, 644–648. https://doi.org/10.1016/j.matlet.2018.11.016
dc.relationDuan, P.; Yan, C.; Zhou, W.; Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88. https://doi.org/10.1016/j.conbuildmat.2016.05.059
dc.relationGitari, M. W.; Akinyemi, S. A.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N. (2018). Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials. Journal of African Earth Sciences, 137, 218–228. https://doi.org/10.1016/j.jafrearsci.2017.10.016
dc.relationKinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Räisänen, M. L.; Levänen, E.; Illikainen, M. (2018). Recycling mine tailings in chemically bonded ceramics – A review. Journal of Cleaner Production, 174, 634–649. https://doi.org/10.1016/j.jclepro.2017.10.280
dc.relationKiventerä, J.; Golek, L.; Yliniemi, J.; Ferreira, V.; Deja, J.; Illikainen, M. (2016). Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization. International Journal of Mineral Processing, 149, 104–110. https://doi.org/10.1016/j.minpro.2016.02.012
dc.relationKról, M.; Mozgawa, W. (2019). Zeolite layer on metakaolin-based support. Microporous and Mesoporous Materials, 282 (February), 109–113. https://doi.org/10.1016/j.micromeso.2019.03.028
dc.relationLahoti, M.; Wong, K. K.; Yang, E. H.; Tan, K. H. (2018). Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), 5726–5734. https://doi.org/10.1016/j.ceramint.2017.12.226
dc.relationMermerdaş, K.; Manguri, S.; Nassani, D. E.; Oleiwi, S. M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology an International Journal, 20(6), 1642–1652. https://doi.org/10.1016/j.jestch.2017.11.009
dc.relationNazari, A., y Sanjayan, J. G. (2017). Handbook of Low Carbon Concrete. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/handbook-of-low-carbon-concrete/nazari/978-0-12-804524-4
dc.relationPacheco-Torgal, F. (2014a). Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construction and Building Materials, 51, 151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058
dc.relationPacheco-Torgal, F; Labrincha, J. A.; Leonelli, C.; Palomo; A.; Chindaprasirt, P. (2014b). Handbook of Alkali-Activated Cements, Mortars and Concretes. Cambridge, Woodhead Publishing. https://www.elsevier.com/books/handbook-of-alkali-activated-cements-mortars-and-concretes/pacheco-torgal/978-1-78242-276-1
dc.relationPacheco-Torgal, F.; Jalali, S.; Labrincha, J. A.; John, V. M. (2013). Eco-Efficient Concrete. Cambridge. Woodhead Publishing Limited. https://www.elsevier.com/books/eco-efficient-concrete/pacheco-torgal/978-0-85709-424-7.
dc.relationPalomo, A., Krivenko, P., Kavalerova, E., y Maltseva, O. (2018). A review on alkaline activation: New analytical perspectives. Materiales de Construcción, 64 (315), 1–23.
dc.relationPandurangan, K.; Thennavan, M.; Muthadhi, A. (2018). Studies on effect of source of flyash on the bond strength of geopolymer concrete. Materials Today: Proceedings, 5(5), 12725–12733. https://doi.org/10.1016/j.matpr.2018.02.256
dc.relationProvis, J. L. (2017). Alkali-activated materials. Cement and Concrete Research. 114 (2), 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009
dc.relationProvis, J. L.; Van Deventer, J. S. (2009). Geopolymers: Structures, processing, properties and industrial applications. Australia, Woodhead Publishing. https://www.elsevier.com/books/geopolymers/provis/978-1-84569-449-4.
dc.relationRamujee, K.; Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4 (2), 2937–2945. https://doi.org/10.1016/j.matpr.2017.02.175
dc.relationRend, M.; Fern, B. A.; Mart, M.; Andr, M.; José, T. A.; (2015). Desarrollo de nuevos cementos: “Cementos alcalinos y cementos híbridos”, México, Instituto Mexicano del Transporte, 73 p.
dc.relationRivera, G. (2013). Dosificación de mezclas de concreto. Concreto simple. Colombia, pp. 169-197. Universidad del Cauca. https://www.academia.edu/13569512/CONCRETO_SIMPLE Solismaa, S.; Ismailov, A.; Karhu, M.; Sreenivasan, H.; Lehtonen, M.; Kinnunen, P.; Illikainen, M.; Räisänen, M. L. (2018). Valorization of Finnish mining tailings for use in the ceramics industry. Bulletin of the Geological Society of Finland, 90 (1), 33–54. https://doi.org/10.17741/bgsf/90.1.002
dc.relationSpin S.A. (2018). Especificaciones y certificado de calidad Flocsil, Colombia, Centro de investigación Spin S.A, 1 p.
dc.relationWei, B., Zhang, Y., y Bao, S. (2017). Preparation of geopolymers from vanadium tailings by mechanical activation. Construction and Building Materials, 145, 236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234
dc.relationWills, B. A.; Finch, J. A. (2016). Wills’ Mineral Processing Technology. Oxford, Butterworth-Heinemann. https://www.elsevier.com/books/wills-mineral-processing-technology/wills/978-0-08-097053-0
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1476/1415
dc.relationNúm. 36 , Año 2021 :
dc.relation17
dc.relation36
dc.relation36009 pp. 1
dc.relation18
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2021
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1476
dc.subjectMine tailings
dc.subjectFlotation tails
dc.subjectAlkaline activation
dc.subjectMortars
dc.subjectResiduos mineros
dc.subjectColas de flotación
dc.subjectActivación alcalina
dc.subjectMorteros
dc.titleActivación alcalina de residuos de minería aurífera de veta para la fabricación de morteros
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución