dc.creatorVargas Isaza, Carlos Andres
dc.creatorUrrego Yepes, William
dc.creatorArbeláez Vergara, Mayra Yuliana
dc.creatorSánchez Manosalba, Claudia Johana
dc.date.accessioned2019-06-06 00:00:00
dc.date.accessioned2022-06-17T20:19:48Z
dc.date.accessioned2022-09-29T14:49:45Z
dc.date.available2019-06-06 00:00:00
dc.date.available2022-06-17T20:19:48Z
dc.date.available2022-09-29T14:49:45Z
dc.date.created2019-06-06 00:00:00
dc.date.created2022-06-17T20:19:48Z
dc.date.issued2019-06-06
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5033
dc.identifier10.24050/reia.v16i32.1214
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v16i32.1214
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3777069
dc.description.abstractSe lleva a cabo una revisión de investigaciones cuyo eje de estudio son los compuestos de caucho natural reforzados con cargas obtenidas a partir de residuos pos-industriales como el almidón de patata, bagazo de caña de azúcar, aserrín, cáñamo, tallo de plátano, cáscara de semilla de tamarindo, cascarilla de arroz, sílice obtenida de la cascarilla de arroz, fibra de coco, fibra de hoja de piña, lodo de mármol y ceniza de palma de aceite. Se evalúa para cada carga su composición, métodos de obtención y tratamientos de preparación, su incorporación en la matriz polimérica, las características de vulcanización de las mezclas y las propiedades físicas, químicas, térmicas y mecánicas.
dc.description.abstractSe lleva a cabo una revisión de investigaciones cuyo eje de estudio son los compuestos de caucho natural reforzados con cargas obtenidas a partir de residuos pos-industriales como el almidón de patata, bagazo de caña de azúcar, aserrín, cáñamo, tallo de plátano, cáscara de semilla de tamarindo, cascarilla de arroz, sílice obtenida de la cascarilla de arroz, fibra de coco, fibra de hoja de piña, lodo de mármol y ceniza de palma de aceite. Se evalúa para cada carga su composición, métodos de obtención y tratamientos de preparación, su incorporación en la matriz polimérica, las características de vulcanización de las mezclas y las propiedades físicas, químicas, térmicas y mecánicas.
dc.languagespa
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationAhmad, I. et al., 2012. Electron-beam-irradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites. Composites Part B: Engineering, 43(8), pp.3069–3075. Available at: http://dx.doi.org/10.1016/j.compositesb.2012.04.071.
dc.relationAhmed, K. et al., SCIENTIFIC PAPER EFFECT OF MICRO SIZED MARBLE SLUDGE ON PHYSICAL PROPERTIES OF NATURAL RUBBER COMPOSITES. Available at: https://www.researchgate.net/profile/Khalil_Ahmed/publication/267988373_Effect_of_micro-sized_marble_sludge_on_physical_properties_of_natural_rubber_composites/links/55300cf80cf27acb0de85244/Effect-of-micro-sized-marble-sludge-on-physical-properties-of-na [Accessed November 3, 2017].
dc.relationAhmed, K., Nizami, S.S., Raza, N.Z., et al., 2013a. The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University - Science, 25(4), pp.331–339. Available at: http://dx.doi.org/10.1016/j.jksus.2013.02.004.
dc.relationAhmed, K., Nizami, S.S., Raza, N.Z., et al., 2013b. The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University - Science, 25(4), pp.331–339.
dc.relationAhmed, K., Nizami, S.S. & Raza, N.Z., 2013. Characteristics of natural rubber hybrid composites based on marble sludge/ carbon black and marble sludge/rice husk derived silica. Available at: https://ac.els-cdn.com/S1226086X12004340/1-s2.0-S1226086X12004340-main.pdf?_tid=b0f27030-c099-11e7-839c-00000aacb362&acdnat=1509715380_34e3af7756c72b15f47cef3eb92d03ca [Accessed November 3, 2017].
dc.relationAhmed, K., Nizami, S.S. & Riza, N.Z., 2014a. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica. Journal of Advanced Research, 5(2), pp.165–173. Available at: http://dx.doi.org/10.1016/j.jare.2013.01.008.
dc.relationAhmed, K., Nizami, S.S. & Riza, N.Z., 2014b. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica. Journal of Advanced Research, 5(2), pp.165–173. Available at: http://dx.doi.org/10.1016/j.jiec.2012.12.014.
dc.relationBrumovsky, L.A., 2014. QUÍMICA DEL ALMIDÓN. Available at: http://www.aulavirtual-exactas.dyndns.org/claroline/backends/download.php?url=L0FwdW50ZXNfZGVfdGVvcu1hL0FsbWlkb24yMDE0LnBkZg%3D%3D&cidReset=true&cidReq=IA818 [Accessed November 1, 2017].
dc.relationDa Costa, H.M. et al., 2003. Rice husk ash filled natural rubber. III. Role of metal oxides in kinetics of sulfur vulcanization. Journal of Applied Polymer Science, 90(6), pp.1519–1531.
dc.relationEastern Research Group, I. et al., 2009. Resource assessment for livestock and agro-industrial wastes- India, Ezema, I.C. et al., 2014. Effect of Surface Treatment and Fiber Orientation on the Tensile and Morphological Properties of Banana Stem Fiber Reinforced Natural Rubber Composite. Journal of Mineral and Material Characterization and Engineering, 2(May), pp.216–222.
dc.relationFernandez, A. et al., 2016. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Available at: https://ac-els-cdn-com.itm.elogim.com:2443/S135943111630998X/1-s2.0-S135943111630998X-main.pdf?_tid=da95367e-b8d9-11e7-bff0-00000aacb35e&acdnat=1508863327_22487b4f04bdac73512d1d9a718d6914 [Accessed October 24, 2017].
dc.relationFerreira-Leitao, V. et al., Biomass Residues in Brazil: Availability and Potential Uses. Available at: http://repositorio.int.gov.br:8080/jspui/bitstream/123456789/363/1/Biomass Residues in Brazil Availability and Potential Uses.pdf [Accessed October 27, 2017].
dc.relationFu, J.-F. et al., 2013. Mechanical and tribological properties of natural rubber reinforced with carbon blacks and Al2O3 nanoparticles. Materials & Design, 49, pp.336–346. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0261306913000563. Geethamma, V.G. et al., 1998. Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer, 39(6–7), pp.1483–1491.
dc.relationGeethamma, V.G. et al., 2005. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Composites Part A: Applied Science and Manufacturing, 36(11), pp.1499–1506.
dc.relationGonzález-Velandia, K.-D. et al., 2016. Evaluación de las propiedades físicas y químicas de residuos sólidos orgánicos a emplearse en la elaboración de papel. Luna Azul, 43, pp.499–517. Available at: http://200.21.104.25/lunazul/index.php?option=com_content&view=article&id=210 [Accessed October 31, 2017].
dc.relationHariwongsanupab, N. et al., 2017. Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polymer Testing, 57, pp.94–100. Available at: http://dx.doi.org/10.1016/j.polymertesting.2016.11.019.
dc.relationHashim, F., Ismail, H. & Rusli, A., 2017. Effect of fibre treatments on tensile properties of ethylene vinyl acetate/natural rubber/mengkuang leaf fibre (EVA/NR/MLF) thermoplastic elastomer composites. In p. 40013. Available at: http://aip.scitation.org/doi/abs/10.1063/1.4993355 [Accessed October 29, 2017].
dc.relationHassan AL-nesrawy, S. & Al-maamori, M., 2014. Effect of mixture of Reclaimed tire and Carbon Black Percent on the Mechanical properties of SBR/NR blends. International Journal of Advanced Research Journalwww.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH, 2(3), pp.234–243.
dc.relationImanah, J.E. & Okieimen, F.E., 2003. Rheological and Mechanical Properties of Natural Rubber Reinforced with Agricultural Byproduct. Journal of Applied Polymer Science, 90(13), pp.3718–3722.
dc.relationKaewasakul, W., 2013a. Silica-Reinforced Natural Rubber for low rolling resistance, energy-saving tires. University of Twente.
dc.relationKaewasakul, W., 2013b. Thesis: Silica-Reinforced Natural Rubber for low rolling resistance, energy-saving tires: aspects of mixing, formulation and compatibilization, Kanking, S. et al., 2012. Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber compound. Materials and Design, 41, pp.74–82. Available at: http://dx.doi.org/10.1016/j.matdes.2012.04.042.
dc.relationLecorre, D.S., Bras, J. & Dufresne, A., 2012. Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromolecular Materials and Engineering, 297(10), pp.969–978.
dc.relationLópez-miranda, J. et al., 2007. OPTIMIZACIÓN DEL PROCESO DE OBTENCIÓN ENZIMÁTICA DE AZÚCARES FERMENTABLES A PARTIR DE ASERRÍN DE PINO. Available at: http://www.scielo.org.mx/pdf/rica/v25n2/v25n2a4.pdf [Accessed October 31, 2017].
dc.relationMaiti, S. et al., 2016a. Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food and Bioproducts Processing, 98, pp.217–226. Available at: http://dx.doi.org/10.1016/j.fbp.2016.01.002.
dc.relationMaiti, S. et al., 2016b. Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food and Bioproducts Processing, 98, pp.217–226. Manaila, E. et al., 2016. Wood sawdust/natural rubber ecocomposites cross-linked by electron beam irradiation. Materials, 9(7), pp.1–23.
dc.relationMartínez, J.D., Murillo, R. & García, T., 2013. Production of carbon black from the waste tires pyrolysis. Bol. Grupo Español Carbón, (i), pp.10–14.
dc.relationMohammed, L. et al., 2015. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015, pp.1–15. Available at: http://www.hindawi.com/journals/ijps/2015/243947/.
dc.relationObasi, N.E. & Orisakwe, C.A., 2013. PRODUCTION AND EVALUATION OF VELVET TAMARIND (DIALIUM GUINEESE WILD) CANDY. European Journal of Food Science and Technology, 1(1), pp.1–8. Available at: http://www.eajournals.org/wp-content/uploads/Production-and-Evaluation-of-Velvet-Tamarind-Dialium-Guineese-Wild-Candy.pdf [Accessed November 3, 2017].
dc.relationOkoh, B.E. & Osabohien, E., 2014. The reinforcing potentials of Velvet tamarind seed shell as filler in natural rubber compounds. , 8(October), pp.2367–2376.
dc.relationOoi, Z.X., Ismail, H. & Abu Bakar, A., 2015. Characterization of oil palm ash (OPA) and thermal properties of OPA-filled natural rubber compounds. Journal of Elastomers and Plastics, 47(1), pp.13–27.
dc.relationOoi, Z.X., Ismail, H. & Abu Bakar, A., 2014. Curing characteristics, mechanical, morphological, and swelling assessment of liquid epoxidized natural rubber coated oil palm ash reinforced natural rubber composites. Polymer Testing, 33(October 2016), pp.145–151. Available at: http://dx.doi.org/10.1016/j.polymertesting.2013.11.007.
dc.relationOoi, Z.X., Ismail, H. & Abu Bakar, A., 2013. Synergistic effect of oil palm ash filled natural rubber compound at low filler loading. Polymer Testing, 32(1), pp.38–44.
dc.relationOsabohien, E. & Egboh, S.H.O., 2008. Utilization of bowstring hemp fiber as a filler in natural rubber compounds. Journal of Applied Polymer Science, 107(1), pp.210–214. Available at: http://doi.wiley.com/10.1002/app.27012 [Accessed November 3, 2017].
dc.relationP, M. & TE, M., 2016. Natural Rubber and Reclaimed Rubber Composites–A Systematic Review. Polymer science, 2(1), pp.1–19. Available at: http://polymerscience.imedpub.com/natural-rubber-and-reclaimed-rubber-compositesa-systematic-review.php?aid=11066.
dc.relationPanyasart, K. et al., 2014. ScienceDirect Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56(56), pp.406–413. Available at: http://creativecommons.org/licenses/by-nc-nd/3.0/ [Accessed November 1, 2017].
dc.relationPatnaik, B.T. & Brown, B., 2010. Carbon black : why quality matters. , pp.16–18.
dc.relationPinpat, W., Keawwattana, W. & Tangbunsuk, S., 2017. Effect of Ashes as Biomass in Silica Filled Natural Rubber. Key Engineering Materials, 735, pp.153–157. Available at: http://www.scientific.net/KEM.735.153 [Accessed November 2, 2017].
dc.relationPongdong, W. et al., 2015. Influence of Filler from a Renewable Resource and Silane Coupling Agent on the Properties of Epoxidized Natural Rubber Vulcanizates. , 2015.
dc.relationPosada-correa, J.C. et al., 2014. Estudio comparativo de negro de humo y alúmina como cargas reforzantes en mezclas de caucho natural. Revista de la facultad de ingenierías fisicomecánicas, 13(2), pp.59–67. Available at: http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/4464.
dc.relationRajisha, K.R. et al., 2014. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. International Journal of Biological Macromolecules.
dc.relationRattanasom, N. & Prasertsri, S., 2012. Mechanical properties, gas permeability and cut growth behaviour of natural rubber vulcanizates: Influence of clay types and clay/carbon black ratios. Polymer Testing, 31(5), pp.645–653. Available at: http://dx.doi.org/10.1016/j.polymertesting.2012.04.001.
dc.relationRodolfo Ruiz Posada, Z.J.C.R.G. (Docentes E.M.). y L.O.H. (Estudiante M.I.U. de la P.C., 2014. Utilización del fruto de palma de aceite en la alimentacion de pollos de engorde en fase de finalizacion - Engormix. Available at: https://www.engormix.com/avicultura/articulos/utilizacion-fruto-palma-aceite-t30968.htm [Accessed November 1, 2017].
dc.relationRosaDomínguez-Bocanegra, A., AntonioTorres-Muñoz, J. & AguilarLópez, R., 2015. Production of Bioethanol from agro-industrial wastes. Fuel, 149, pp.85–89. Available at: http://www.sciencedirect.com.itm.elogim.com/science/article/pii/S0016236114009314 [Accessed October 24, 2017].
dc.relationSantos, A., Villegas, N. & Betancourt, J., 2012. Residuo de mármol como insumo en la construcción civil: diagnóstico de la Comarca Lagunera. Revista de la construcción, 11(2), pp.17–26. Available at: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2012000200003&lng=en&nrm=iso&tlng=en [Accessed November 1, 2017].
dc.relationSantos, N.S., Silva, M.R. & Alves, J.L., 2017. ScienceDirect Reinforcement of a biopolymer matrix by lignocellulosic agro-waste. Procedia Engineering, 200, pp.422–427. Available at: www.elsevier.com/locate/procedia [Accessed October 24, 2017].
dc.relationSantos, R.J. dos et al., 2014. Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros, 24(6), pp.646–653. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282014000600004&lng=en&tlng=en.
dc.relationSerrano Guzmán, M.F. & Ruiz, D.D.P., 2011. Concreto preparado con residuos industriales: resultado de alianza empresa universidad. Revista Educación en Ingeniería, 6(11), pp.1–11. Available at: http://www.educacioneningenieria.org/index.php/edi/article/view/116.
dc.relationStelescu, M.-D. et al., 2014. New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation. The Scientific World Journal, 2014.
dc.relationUniversidad Industrial de Santander. Centro de Estudios de Ingeniería Química., O.J., Gómez García, M.Á. & Alzate, J.F., 2012. Ion., Centro de Ingeniería Química de la U.I.S. Available at: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-100X2012000100007 [Accessed October 31, 2017].
dc.relationVargas, C.A. et al., 2016. Reinforcement effect of carbon black in Colombian natural rubber: Benchmarking with Guatemala rubber. Journal of Elastomers and Plastics, pp.1–14. Available at: http://jep.sagepub.com/cgi/doi/10.1177/0095244316645953.
dc.relationVerónica Benavente, ଝ, Calabuig, E. & Fullana, A., 2015. Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113, pp.89–98. Available at: https://ac-els-cdn-com.itm.elogim.com:2443/S0165237014002770/1-s2.0-S0165237014002770-main.pdf?_tid=3aed8cd4-b8d9-11e7-8b3b-00000aab0f27&acdnat=1508863059_2a64eb6b173af7a739da8fd77975df21 [Accessed October 24, 2017].
dc.relationYantaboot, K. & Amornsakchai, T., 2017. Effect of mastication time on the low strain properties of short pineapple leaf fiber reinforced natural rubber composites. Polymer Testing, 57, pp.31–37. Available at: http://dx.doi.org/10.1016/j.polymertesting.2016.11.006.
dc.relationYeşilay, S., Çakı, M. & Ergun, H., 2017. Usage of marble wastes in traditional artistic stoneware clay body. Available at: www.elsevier.com/locate/ceramint [Accessed October 24, 2017].
dc.relationZahan, Z., Othman, M.Z. & Muster, T.H., 2017. of different agro- industrial waAnaerobic digestion/co-digestion kinetic potentialsstes: A comparative batch study for C/N optimisation. Waste Management. Available at: https://ac-els-cdn-com.itm.elogim.com:2443/S0956053X17305871/1-s2.0-S0956053X17305871-main.pdf?_tid=578ffb22-b8d6-11e7-976b-00000aab0f26&acdnat=1508861819_2d03ce8af6452c7e632eb6d73f5d4d9e [Accessed October 24, 2017].
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1214/1251
dc.relationNúm. 32 , Año 2019
dc.relation149
dc.relation32
dc.relation129
dc.relation16
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2019
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1214
dc.subjectCaucho natural
dc.subjectresiduos agroindustriales
dc.subjectrefuerzos
dc.subjectnegro de humo
dc.subjectsílice
dc.subjectciencia de los materiales
dc.subjectmateriales compuestos
dc.titleComportamiento fisicoquímico de compuestos de caucho natural al adicionar residuos agroindustriales como cargas reforzantes
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución