Trabajo de grado - Pregrado
Procesamiento de la señal electroencefalográfica bajo anestesia general
Fecha
2015Registro en:
Autor
Hernandez Solarte, David Antonio
Institución
Resumen
La anestesia general es un procedimiento muy frecuente en el ambiente médico, el cual es un estado en el que el cuerpo del paciente no percibirá ningún estímulo, o por lo menos es lo que busca, por tal motivo existe la necesidad de realizar una monitorización de que tan anestesiado está el paciente, cumpliendo los principios básicos de la anestesia que son la hipnosis, amnesia, analgesia, relajación muscular. Para realizar dicho control del estado anestesico del paciente, se utiliza la concentracion alveolar minima (CAM) para “cuantificar” que tan profundo se encuentra cuando se utiliza una anestesia inducida por farmacos gaseosos, y se utilizan varios dispositivos que hacen estudios electroencefalograficos, como el BIS cuando se realiza una anestesia total intravenosa (TIVA), todo esto debe realizarse para poder aplicar con debida mesura la cantidad de farmaco para que el paciente no reaccione de manera adversa al procedimiento.
A nivel de anestesiología, los especialistas tienen mucha confianza en la CAM, pero en un medio más moderno, la tendencia es realizar anestesia mediante TIVA ya que ofrece ciertas ventajas y características con respecto a la anestesia inhalada, pero tiene una desventaja que es la implementación del monitoreo de la anestesia, lo cual resulta sumamente costoso cuando se implementa con el BIS cuyos consumibles, los electrodos, implican alto costo y no son reutilizables, por otro lado, la respuesta de este dispositivo suele tener problemas cuando se utiliza un electrobisturí y hay estudios que indican que no es confiable del todo.
El presente trabajo busca desarrollar un estudio de electroencefalografía (EEG) que permita de forma más fiable poder monitorear el estado de profundidad anestésica del paciente implementando herramientas informáticas como el reconocimiento de patrones para eliminar información redundante y reducir la dimensionalidad de los datos y la aplicación de aprendizaje automático para poder extraer características de la señal EEG para determinar estados anestésicos que pueda presentar el paciente.
Se realizó un sistema de clasificación de estados anestésicos partiendo de la reducción de la dimensionalidad de los 16 a 14 canales, dando como resultado que cada señal capturada por cada canal es diferente, lo cual realizara un estudio más completo que con menos electrodos. Se creó una matriz de características para ingresarla al algoritmo de K-means para entrenar el sistema. Al validar la información con la base de datos suministrada se obtuvo que el algoritmo funciona aceptablemente para la clasificación de estados anestésicos obteniendo resultados por encima del 83%.