dc.creatorCardona Palacio, Luis Fernando
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:27Z
dc.date.accessioned2022-09-29T14:48:02Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:27Z
dc.date.available2022-09-29T14:48:02Z
dc.date.created2022-06-01 00:00:00
dc.date.created2022-06-17T20:21:27Z
dc.date.issued2022-06-01
dc.identifier1794-1237
dc.identifierhttps://repository.eia.edu.co/handle/11190/5169
dc.identifier10.24050/reia.v19i38.1535
dc.identifier2463-0950
dc.identifierhttps://doi.org/10.24050/reia.v19i38.1535
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3776349
dc.description.abstractEn este trabajo se modela la viscosidad dinámica de fluidos newtonianos a partir de la teoría de Eyring junto con la energía libre de Helmholtz residual. Para la estimación de esta energía se utiliza una versión modificada de la ecuación cúbica de estado de Peng-Robinson. Los parámetros ajustables del modelo se han determinado a partir de datos experimentales en la zona coexistencia líquido-vapor para n-alcanos y n-alcoholes. Posteriormente estos parámetros se han generalizado utilizando expresiones matemáticas simples que dependen del peso molecular de cada sustancia. Se evalúan las capacidades predictivas del modelo en condiciones de una sola fase. Las desviaciones absolutas durante el proceso de correlación son menores de 3,27%, mientras que en el proceso de predicción son menores de 5,60%. El modelo generalizado es extendido a mezclas binarias utilizando una regla de mezcla simple sin y con coeficientes de interacción, con desviaciones absolutas de 8,19% y 3,45%, respectivamente. Finalmente, el modelo es comparado con otros en la literatura y los resultados estadísticos muestran que proporciona resultados aceptables.
dc.description.abstractIn this work, the dynamic viscosity of Newtonian fluids is modeled using Eyring's theory and the residual Helmholtz free energy. In order to estimate this energy, a modified Peng-Robinson cubic equation of state is applied. The adjustable parameters of the model have been determined from experimental data in the liquid and vapor coexistence for n-alkanes and n-alcohols. Later these parameters have been generalized using simple mathematical expressions that depend on the molecular weight of each substance. The predictive capabilities of the model are evaluated under single-phase conditions. The absolute deviations during correlation are below 3.27% while in prediction are below 5.60%. The generalized model is extended to mixtures using a simple mixture rule with one binary interaction parameter and the result without interaction is 8.19% and estimated is 3.45%. Finally, the model is compared with others in the literature and the statistical results show that the generalized model provides acceptable results.
dc.languagespa
dc.publisherFondo Editorial EIA - Universidad EIA
dc.relationAssael, M. J.; Charitidou, E.; Dymond, J. H.; Papadaki, M. (1992). Viscosity and thermal conductivity of binary n-heptane+ n-alkane mixtures. International journal of thermophysics, 13(2), 237-249. https://doi.org/10.1007/BF00504434
dc.relationAbdulagatov, I. M.; Azizov, N. D. (2006). (p, ρ, T, x) and viscosity measurements of {x1n-heptane+(1− x1) n-octane} mixtures at high temperatures and high pressures. The Journal of Chemical Thermodynamics, 38(11), 1402-1415. https://doi.org/10.1016/j.jct.2006.01.012
dc.relationBenabithe, Z. Z.; Vanegas, D.; Montoya, J. C. R.; Velásquez, J. A. (2020). Caso de estudio de la destilación etanol-agua en operación continua y discontinua y su simulación con ecuaciones cúbicas de estado y modelos de actividad. TecnoLógicas, 23(49), 223-249. https://doi.org/10.22430/22565337.1638
dc.relationBonyadi, M.; Rostami, M. (2017). A new viscosity model based on Soave-Redlich-Kwong equation of state. Fluid Phase Equilibria, 451, 40-47. https://doi.org/10.1016/j.fluid.2017.07.009
dc.relationBloxham, J. C.; Redd, M. E.; Giles, N. F.; Knotts IV, T. A.; Wilding, W. V. (2021). Proper Use of the DIPPR 801 Database for Creation of Models, Methods, and Processes. Journal of Chemical & Engineering Data, 66(1), 3-10. https://doi.org/10.1021/acs.jced.0c00641
dc.relationCardona, L. F. (2016). Calculation of the viscosity of hydrocarbons based on the cubic equation of state of Jarrahian-Heidaryan. Revista Mexicana De Ingeniería Química, 15(3), 1019-1025.
dc.relationCano-Gómez, J. J.; Iglesias-Silva, G. A.; Castrejón-González, E. O.; Ramos-Estrada, M.; Hall, K. R. (2015). Density and viscosity of binary liquid mixtures of ethanol+ 1-hexanol and ethanol+ 1-heptanol from (293.15 to 328.15) K at 0.1 MPa. Journal of Chemical & Engineering Data, 60(7), 1945-1955. https://doi.org/10.1021/je501133u
dc.relationCardona, L. F.; Forero, L. A.; Velásquez, J. A. (2019). Modelamiento de la Viscosidad con Base en una Ecuación Cúbica μTP del Tipo Peng-Robinson. Información tecnológica, 30(4), 259-272. http://dx.doi.org/10.4067/S0718-07642019000400259
dc.relationChevalier, J. L. E.; Petrino, P. J.; Gaston-Bonhomme, Y. H. (1990). Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. Journal of Chemical and Engineering Data, 35(2), 206-212. https://doi.org/10.1021/je00060a034
dc.relationDaubert, T. E. (1998). Evaluated equation forms for correlating thermodynamic and transport properties with temperature. Industrial & Engineering Chemistry Research, 37(8), 3260-3267. https://doi.org/10.1021/ie9708687
dc.relationDerevich, I. V. (2010). Thermodynamic model of viscosity of hydrocarbons and their mixtures. International Journal of Heat and Mass Transfer, 53(19-20), 3823-3830. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.035
dc.relationElliott, J. R.; Lira, C. T.; Lira, C. T. (2012). Introductory chemical engineering thermodynamics (2a ed.). Nueva York: Prentice Hall.
dc.relationFan, T. B.; Wang, L. S. (2006). A viscosity model based on Peng-Robinson equation of state for light hydrocarbon liquids and gases. Fluid Phase Equilibria, 247(1-2), 59-69. https://doi.org/10.1016/j.fluid.2006.06.008
dc.relationForero, L. A.; Velásquez, J. A. (2019). Representación Simultánea del Equilibrio Líquido-Vapor, el Volumen Molar y la Entalpía de Exceso de Mezclas Complejas mediante una Ecuación de Estado tipo Peng-Robinson. Información Tecnológica, 30(6), 21-34. http://dx.doi.org/10.4067/S0718-07642019000600021
dc.relationHussein, N. M.; Asfour, A. F. A. (2009). Densities and kinematic viscosities of ten binary 1-alkanol liquid systems at temperatures of (293.15 and 298.15) K. Journal of Chemical & Engineering Data, 54(10), 2948-2952. https://doi.org/10.1021/je800497u
dc.relationKontogeorgis, G. M.; Folas, G. K. (2010). Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. Nueva York: John Wiley & Sons, Inc. Kumagai, A.; Yokoyama, C. (1998). Liquid viscosity of binary mixtures of methanol with ethanol and 1-propanol from 273.15 to 333.15 K. International Journal of Thermophysics, 19(1), 3-13. https://doi.org/10.1023/A:1021438800094
dc.relationLasdon, L. S.; Waren, A. D.; Jain, A., Ratner, M. (1978). Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 4(1), 34-50. https://doi.org/10.1145/355769.355773
dc.relationLemmon, E. W.; Huber, M. L.M.; Mclinden, M. O. (2007). NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. (version 8.0) [software]. NIST-REFPROP 8. https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport-0?pub_id=50520
dc.relationLiu, X.; Zhu, C.; He, M.; Zhang, Y. (2017). Correlation for viscosities of pure liquids at high pressures. Journal of Molecular Liquids, 231, 404-410. https://doi.org/10.1016/j.molliq.2017.02.026
dc.relationMartins, R. J.; Cardoso, M. J. D. M.; Barcia, O. E. (2003). A new model for calculating the viscosity of pure liquids at high pressures. Industrial & Engineering Chemistry Research, 42(16), 3824-3830. https://doi.org/10.1021/ie021017o Novak, L. T. (2011). Fluid viscosity-residual entropy correlation. International Journal of Chemical Reactor Engineering, 9(1), 1-27. https://doi.org/10.2202/1542-6580.2839
dc.relationPoulopoulos, S. G.; Philippopoulos, C. J. (2003). The effect of adding oxygenated compounds to gasoline on automotive exhaust emissions. J. Eng. Gas Turbines Power, 125(1), 344-350. https://doi.org/10.1115/1.1501076
dc.relationPoling, B. E.; Prausnitz, J. M.; O’connell, J. P. (2001). Properties of gases and liquids (5a ed.). Nueva York: McGraw-Hill Education.
dc.relationSastry, N. V.; Raj, M. M. (1996). Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol+ hexane and+ heptane at 303.15 and 313.15 K. Journal of Chemical & Engineering Data, 41(3), 612-618. https://doi.org/10.1021/je950172p
dc.relationSastry, N. V.; Valand, M. K. (1998). Densities, viscosities, and relative permittivities for pentane+ 1-alcohols (C1 to C12) at 298.15 K. Journal of Chemical & Engineering Data, 43(2), 152-157. https://doi.org/10.1021/je9701801
dc.relationSatyro, M. A.; Yarranton, H. W. (2010). Expanded fluid-based viscosity correlation for hydrocarbons using an equation of state. Fluid Phase Equilibria, 298(1), 1-11. https://doi.org/10.1016/j.fluid.2010.06.023
dc.relationValderrama, J. O. (2003). The state of the cubic equations of state. Industrial & Engineering Chemistry Research, 42(8), 1603-1618. https://doi.org/10.1021/ie020447b
dc.relationValderrama, J. O.; Muñoz, J. M.; Rojas, R. E. (2011). Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean Journal of Chemical Engineering, 28(6), 1451-1457. https://doi.org/10.1007/s11814-010-0512-0
dc.relationVarzandeh, F.; Stenby, E. H.; Yan, W. (2017). General approach to characterizing reservoir fluids for EoS models using a large PVT database. Fluid Phase Equilibria, 433, 97-111. https://doi.org/10.1016/j.fluid.2016.10.018
dc.relationValderrama, J. O.; Cardona, L. F.; Rojas, R. E. (2019). Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: pure ionic liquids. Fluid Phase Equilibria, 497, 164-177. https://doi.org/10.1016/j.fluid.2019.04.034
dc.relationhttps://revistas.eia.edu.co/index.php/reveia/article/download/1535/1460
dc.relationNúm. 38 , Año 2022 : .
dc.relation16
dc.relation38
dc.relation3809 pp. 1
dc.relation19
dc.relationRevista EIA
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsRevista EIA - 2022
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1535
dc.subjectviscosidad
dc.subjectenergía de libre de Helmholtz
dc.subjectecuación de estado
dc.subjectsustancias puras
dc.subjectmezclas
dc.subjectviscosity
dc.subjectHelmholtz free energy
dc.subjectequation of state
dc.subjectpure substances
dc.subjectmixtures
dc.subjectPeng-Robinson
dc.subjectEyring’s theory
dc.subjectsaturated, liquid
dc.subjectvapor
dc.subjectalkanes
dc.subjectalcohols
dc.titleModelación de la viscosidad dinámica de fluidos newtonianos a partir de la teoría de Eyring y la energía libre de Helmholtz residual
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución