dc.contributorEscuela Colombiana de Ingeniería Julio Garavito
dc.contributorUniversidad del Rosario
dc.contributorMunera Ramirez, Marcela Cristina
dc.contributorCifuentes García, Carlos Andrés
dc.creatorTello Urrea, Andrés Felipe
dc.date.accessioned2121-01-31
dc.date.accessioned2022-02-01T15:34:29Z
dc.date.accessioned2022-09-29T14:37:00Z
dc.date.available2121-01-31
dc.date.available2022-02-01T15:34:29Z
dc.date.available2022-09-29T14:37:00Z
dc.date.created2121-01-31
dc.date.created2022-02-01T15:34:29Z
dc.date.issued2021
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/1971
dc.identifierhttps://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=22866
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3776116
dc.description.abstractIntroduction: According to the World Health Organization, Cardiovascular diseases are the most significant non-communicable diseases worldwide level, with approximately 17.9 million deaths per year. To decrease the impact after a cardiovascular episode, cardiac rehabilitation is a Class I recommendation. However, to achieve a successful cardiac rehabilitation program, it is important to measure a variety of parameters that can facilitate data analysis and interpretation of the effort performed. Providing experts with relevant data about the patient allows them to guide a safe and optimized rehabilitation process. Objective: The continuous monitoring of physical fatigue during cardiac rehabilitation leads to a safer protocol. However, there is a lack of objective and non-invasive measures for this parameter, mainly, in protocols based on high-intensity exercise. The main purpose of this study was the characterization of relevant features for fatigue detection, obtained from objective measurements such as inertial and electromyographic signals. Methodology: In the experimental process, 21 healthy subjects performed Highintensity interval training to record kinematic, electromyography (EMG), and Borg scale data, the data was obtained from the biceps femoral and gastrocnemius muscles. From the feature extraction, the data were classified based on the Borg scale and compared between fatigue levels. Results: It was observed that most of the features obtained indicate a relationship with fatigue. As expected some features had a better differentiation between fatigue levels. However, despite that the results showed a correlation with the knowledge obtained from the state of the art, the behavior of the mean frequency from the electromyography signal was the opposite of the data reported. Conclusions: It was concluded that the features extracted were representative of the differentiation of three fatigue levels and new insights of the fatigue characterization during high-intensity exercise was obtained. However, more investigations are imperative to corroborate the results, additionally, a clinical environment with cardiac rehabilitation patients is still needed.
dc.description.abstractIntroducción: Según la Organización Mundial de la Salud, las enfermedades cardiovasculares son las enfermedades no transmisibles más importantes a nivel mundial, con aproximadamente 17,9 millones de muertes al año. Para disminuir el impacto después de un episodio cardiovascular, la rehabilitación cardíaca es una recomendación de Clase I. Sin embargo, para lograr un programa de rehabilitación cardíaca exitoso, es importante medir una variedad de parámetros que pueden facilitar el análisis de datos y la interpretación del esfuerzo realizado. Proporcionar a los expertos datos relevantes sobre el paciente les permite guiar un proceso de rehabilitación seguro y optimizado. Objetivo: La monitorización continua de la fatiga física durante la rehabilitación cardiaca conduce a un protocolo más seguro. Sin embargo, faltan medidas objetivas y no invasivas de este parámetro, principalmente, en protocolos basados ​​en ejercicio de alta intensidad. El objetivo principal de este estudio fue la caracterización de características relevantes para la detección de fatiga, obtenidas a partir de medidas objetivas como señales inerciales y electromiográficas. Metodología: En el proceso experimental, 21 sujetos sanos realizaron entrenamiento interválico de alta intensidad para registrar datos cinemáticos, electromiográficos (EMG) y escala de Borg, los datos se obtuvieron de los músculos bíceps femoral y gastrocnemio. A partir de la extracción de características, los datos se clasificaron según la escala de Borg y se compararon entre los niveles de fatiga. Resultados: Se observó que la mayoría de las características obtenidas indican relación con la fatiga. Como era de esperar, algunas características tenían una mejor diferenciación entre los niveles de fatiga. Sin embargo, a pesar de que los resultados mostraron una correlación con el conocimiento obtenido del estado del arte, el comportamiento de la frecuencia media de la señal de electromiografía fue contrario a los datos reportados. Conclusiones: Se concluyó que las características extraídas eran representativas de la diferenciación de tres niveles de fatiga y se obtuvieron nuevos conocimientos sobre la caracterización de la fatiga durante el ejercicio de alta intensidad. Sin embargo, más investigaciones son imperativas para corroborar los resultados, además, aún se necesita un entorno clínico con pacientes en rehabilitación cardíaca.
dc.languageeng
dc.relationN/A
dc.relation[1] World Health Organization, “Cardiovascular diseases,” 2017. [2] L. Anderson, N. Oldridge, D. R. Thompson, A. D. Zwisler, K. Rees, N. Martin, and R. S. Taylor, “Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease Cochrane Systematic Review and Meta-Analysis,” Journal of the American College of Cardiology, vol. 67, no. 1, pp. 1–12, 2016. [3] J. L. Halperin, G. N. Levine, S. M. Al-Khatib, K. K. Birtcher, B. Bozkurt, R. G. Brindis, J. E. Cigarroa, L. H. Curtis, L. A. Fleisher, F. Gentile, S. Gidding, M. A. Hlatky, J. Ikonomidis, J. Joglar, S. J. Pressler, and D. N. Wijeysundera, “Further evolution of the ACC/AHA clinical practice guideline recommendation classification system: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,” Circulation, vol. 133, no. 14, pp. 1426–1428, 2016. [4] American Heart Association (AHA), “Cardiac Rehabilitation Putting More Patients on the Road to Recovery,” Circulation, vol. 135, no. 10, pp. e146–e603, 2017. [5] R. J. Thomas, A. L. Beatty, T. M. Beckie, L. P. C. Brewer, T. M. Brown, D. E. Forman, B. A. Franklin, S. J. Keteyian, D. W. Kitzman, J. G. Regensteiner, B. K. Sanderson, and M. A. Whooley, “Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology,” Journal of the American College of Cardiology, vol. 74, no. 1, pp. 133–153, 2019. [6] J. C. Quindry, B. A. Franklin, M. Chapman, R. Humphrey, and S. Mathis, “Benefits and Risks of High-Intensity Interval Training in Patients With Coronary Artery Disease,” American Journal of Cardiology, vol. 123, no. 8, pp. 1370–1377, 2019. [7] L. M. Ross, R. R. Porter, and J. L. Durstine, “High-intensity interval training (HIIT) for patients with chronic diseases,” Journal of Sport and Health Science, vol. 5, no. 2, pp. 139–144, 2016. [8] Y. Dun, J. R. Smith, S. Liu, and T. P. Olson, “High-Intensity Interval Training in Cardiac Rehabilitation,” Clinics in Geriatric Medicine, vol. 35, no. 4, pp. 469–487, 2019. [9] O. Rognmo, T. Moholdt, H. Bakken, T. Hole, P. Mølstad, N. E. Myhr, J. Grimsmo, and U. Wisløff, “Cardiovascular Risk of High-Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients,” Circulation, vol. 126, no. 12, pp. 1436–1440, 2012. [10] S. L. Halson, “Monitoring Training Load to Understand Fatigue in Athletes,” Sports Medicine, vol. 44, pp. 139–147, 2014. [11] J. J. Wan, Z. Qin, P. Y. Wang, Y. Sun, and X. Liu, “Muscle fatigue: General understanding and treatment,” Experimental and Molecular Medicine, vol. 49, no. 10, pp. e384–11, 2017. [12] T. J. Freeborn, Fatigue monitoring techniques using wearable systems. Elsevier Inc., 2 ed., 2021. [13] N. Williams, “The Borg Rating of Perceived Exertion (RPE) scale,” Occupational Medicine, vol. 67, no. 5, pp. 404–405, 2017.[14] J. Scherr, B. Wolfarth, J. W. Christle, A. Pressler, S. Wagenpfeil, and M. Halle, “Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity,” European Journal of Applied Physiology, vol. 113, no. 1, pp. 147– 155, 2013. [15] P. S. A. Teixeira, S. V. D. Mendes, J. H. Leal-Cardoso, and V. M. Ceccatto, “Anaerobic threshold employed on exercise training prescription and performance assessment for laboratory rodents: A short review,” Life Sciences, vol. 151, pp. 1–6, 2016. [16] J. She, H. Nakamura, J. Imani, Y. Ohyama, H. Hashimoto, and M. Wu, “Verification of relationship between heart rate and body movement for fatigue estimation,” Proceedings - 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, pp. 775–779, 2014. [17] O. Faude, W. Kindermann, and T. Meyer, “Lactate threshold concepts: How valid are they?,” Sports Medicine, vol. 39, no. 6, pp. 469–490, 2009. [18] D. E. Warburton, C. W. Nicol, and S. S. Bredin, “Prescribing exercise as preventive therapy,” Cmaj, vol. 174, no. 7, pp. 961–974, 2006. [19] A. Luttmann, M. Jäger, and W. Laurig, “Electromyographical indication of muscular fatigue in occupational field studies,” International Journal of Industrial Ergonomics, vol. 25, no. 6, pp. 645–660, 2000. [20] J. M. Dundon, J. Cirillo, and J. G. Semmler, “Low-frequency fatigue and neuromuscular performance after exercise-induced damage to elbow flexor muscles,” Journal of Applied Physiology, vol. 105, no. 4, pp. 1146–1155, 2008. [21] I. Pagé and M. Descarreaux, “Trunk muscle fatigue during a lateral isometric hold test: What are we evaluating?,” Chiropractic and Manual Therapies, vol. 20, pp. 1–7, 2012. [22] S. E. Jero and S. Ramakrishnan, “Analysis of Muscle Fatigue Conditions in Surface EMG Signal with A Novel Hilbert Marginal Spectrum Entropy Method,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 2675–2678, 2019. [23] A. Furui and T. Tsuji, “Muscle Fatigue Analysis by Using a Scale Mixture-based Stochastic Model of Surface EMG Signals,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2, pp. 1948–1951, 2019. [24] C. A. Webster and M. A. Nussbaum, “Localized ankle fatigue development and fatigue perception in adults with or without chronic ankle instability,” Journal of Athletic Training, vol. 51, no. 6, pp. 491–497, 2016. [25] J. C. Cowley, J. B. Dingwell, and D. H. Gates, “Effects of local and widespread muscle fatigue on movement timing,” Experimental Brain Research, vol. 232, no. 12, pp. 3939–3948, 2014. [26] A. Adams, J. M. Schiffman, and L. Hasselquist, “Tracking physiological fatigue in prolonged load carriage walking using phase space warping and smooth orthogonal decomposition.,” in ASME, (Boston, Massachusetts, USA), 2008.. [27] M. Mugnosso, F. Marini, M. Holmes, P. Morasso, and J. Zenzeri, “Muscle fatigue assessment during robot-mediated movements,” Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, pp. 1–15, 2018. [28] V. C. Chan, S. M. Beaudette, K. B. Smale, K. H. Beange, and R. B. Graham, “A subject-specific approach to detect fatigue-related changes in spine motion using wearable sensors,” Sensors (Switzerland), vol. 20, no. 9, 2020. [29] R. L. Krüger, S. J. Aboodarda, L. M. Jaimes, P. Samozino, and G. Y. Millet, “Cycling performed on an innovative ergometer at different intensities–durations in men: Neuromuscular fatigue and recovery kinetics,” Applied Physiology, Nutrition and Metabolism, vol. 44, no. 12, pp. 1320–1328, 2019. [30] R. L. Krüger, S. J. Aboodarda, L. M. Jaimes, B. R. MacIntosh, P. Samozino, and G. Y. Millet, “Fatigue and recovery measured with dynamic properties versus isometric force: Effects of exercise intensity,” Journal of Experimental Biology, vol. 222, no. 9, 2019. [31] D. M. Pincivero, W. S. Gear, and R. L. Sterner, “Assessment of the reliability of highintensity quadriceps femoris muscle fatigue,” Medicine and Science in Sports and Exercise, vol. 33, no. 2, pp. 334–338, 2001. [32] D. J. Sanderson, P. E. Martin, G. Honeyman, and J. Keefer, “Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence,” Journal of Electromyography and Kinesiology, vol. 16, no. 6, pp. 642–649, 2006. [33] A. St Clair Gibson, E. J. Schabort, and T. D. Noakes, “Reduced neuromuscular activity and force generation during prolonged cycling,” American Journal of Physiology - Regulatory Integrative and Comparative Physiology, vol. 281, no. 1 50-1, pp. 187– 196, 2001. [34] D. J. Sanderson and A. Black, “The effect of prolonged cycling on pedal forces,” Journal of Sports Sciences, vol. 21, no. 3, pp. 191–199, 2003. [35] R. R. Bini, F. Diefenthaeler, and C. B. Mota, “Fatigue effects on the coordinative pattern during cycling: Kinetics and kinematics evaluation,” Journal of Electromyography and Kinesiology, vol. 20, no. 1, pp. 102–107, 2010. [36] Smets, “Pergamon fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue,” Journal of Psychosomatic Research, vol. 39, no. 5, pp. 315–325, 1995. [37] P. T. Nikolaidis, T. Rosemann, and B. Knechtle, “Age-predicted maximal heart rate in recreational marathon runners: A cross-sectional study on Fox’s and Tanaka’s equations,” Frontiers in Physiology, vol. 9, no. MAR, pp. 1–6, 2018. [38] F. Torma, Z. Gombos, M. Jokai, M. Takeda, T. Mimura, and Z. Radak, “High intensity interval training and molecular adaptive response of skeletal muscle,” Sports Medicine and Health Science, vol. 1, no. 1, pp. 24–32, 2019.
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleCharacterization of Inertial and Electromyographic signals for physical fatigue estimation in anaerobic exercise
dc.typeDocumento de trabajo


Este ítem pertenece a la siguiente institución