dc.creatorRuiz Cruz, Carlos Rodrigo
dc.creatorGuerrero Rueda, William Javier
dc.creatorJaimes Suárez, Sonia Alexandra
dc.creatorSarmiento Lepesqueur, Angélica
dc.date.accessioned2021-07-07T20:02:43Z
dc.date.accessioned2021-10-01T17:37:30Z
dc.date.accessioned2022-09-29T14:36:06Z
dc.date.available2021-07-07T20:02:43Z
dc.date.available2021-10-01T17:37:30Z
dc.date.available2022-09-29T14:36:06Z
dc.date.created2021-07-07T20:02:43Z
dc.date.created2021-10-01T17:37:30Z
dc.date.issued2016
dc.identifier0121-5132
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/1625
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3775823
dc.description.abstractLa optimización binivel consiste en cambiar el paradigma de optimización tradicional, donde un solo agente selecciona su objetivo. Su principal aporte es lograr considerar la interacción que existe entre las decisiones que toman dos tipos de agentes: un líder y un seguidor. En este artículo se exploran posibles campos de aplicación de la optimización binivel, en particular como apoyo a la toma de decisiones en la planeación y control de operaciones e inventarios. Se presenta una visión general de las características de esta técnica y diferentes contextos prácticos en los cuales se ha utilizado. Finalmente, se hace énfasis en la importancia de esta técnica para el desarrollo de investigación aplicada en temas de programación de operaciones, gestión de inventarios y gestión de la cadena de abastecimiento, con nuevas perspectivas para desarrollo de trabajos en este campo.
dc.description.abstractBilevel optimization consists on reevaluating the paradigm imposed by traditional optimization approaches where a single agent decides the goal to be reached. The main contribution of this new approach is to make a more accurate modelling of the interaction between decisions made by two types of agents: the leader and the follower. In this paper, potential fields of application for bilevel optimization models are discussed, especially those associated to decision-making tools for operations and inventory management. A general overview of this modelling technique is presented and different practical applications are analyzed. Finally, special focus is given to the potential benefits this technique can provide to applied research in fields such as operations scheduling, inventory management, and supply chain management problems.
dc.languagespa
dc.publisherEscuela Colombiana de Ingeniería Julio Garavito
dc.publisherBogotá, Colombia.
dc.relationN.° 103 Enero-marzo de 2016, pp. 19-27
dc.relation27
dc.relation19
dc.relation103
dc.relationN/A
dc.relationEscuela Colombiana de Ingeniería
dc.relationT. W. Ruefli, “A Generalized Goal Decomposition Model,” Manage. Sci., vol. 17, N.° 8, p. B505–B518, Apr. 1971.
dc.relationN. I. Kalashnykova, V. V. Kalashnikov, and R. C. H. Maldonado, “Bilevel Toll Optimization Problems: A Heuristic Algorithm Based Upon Sensitivity Analysis,” Springer Berlin Heidelberg, 2012, pp. 135-143.
dc.relationW. F. Bialas and M. H. Karwan, “Two-level linear programming,” Manage. Sci., vol. 30, N.° 8, pp. 1004-1020, 1984.
dc.relationH. Von Stackelberg, The theory of the market economy. Oxford University Press, 1952.
dc.relationJ. F. Bard, Practical bilevel optimization: algorithms and applications. Dordrecht; Boston: Kluwer Academic Publishers, 1998.
dc.relationB. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” Ann. Oper. Res., vol. 153, N.° 1, pp. 235-256, Apr. 2007.
dc.relationR. G. Jeroslow, “The polynomial hierarchy and a simple model for competitive analysis,” Math. Program., vol. 32, N.° 2, pp. 146-164, Jun. 1985.
dc.relationJ. Bard and J. Moore, “A branch and bound algorithm for the bilevel programming problem,” SIAM J. Sci. Stat. Comput., 1990.
dc.relationS. Dempe and A. B. Zemkoho, “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem,” Nonlinear Anal. Theory, Methods Appl., vol. 75, N.° 3, pp. 1202-1218, Feb. 2012.
dc.relationM. Sakawa, I. Nishizaki, and Y. Uemura, “Interactive fuzzy programming for multilevel linear programming problems,” Comput. Math. with Appl., vol. 36, N.° 2, pp. 71-86, Jul. 1998.
dc.relationM. Gendreau, P. Marcotte, and G. Savard, “A hybrid Tabuascent algorithm for the linear Bilevel Programming Problem,” J. Glob. Optim., vol. 8, N.° 3, pp. 217–233, Apr. 1996.
dc.relationS. Hejazi and A. Memariani, “Linear bilevel programming solution by genetic algorithm,” Comput. Oper. …, 2002.
dc.relationK. Sahin and A. Ciric, “A dual temperature simulated annealing approach for solving bilevel programming problems,” Comput. Chem. Eng., 1998.
dc.relationW. Norton, R. Candler, “Multi-level programming and development policy,” pp. 1-56, May 1977.
dc.relationJ. F. Bard, J. Plummer, and J. Claude Sourie, “A bilevel programming approach to determining tax credits for biofuel production,” Eur. J. Oper. Res., vol. 120, N.° 1, pp. 30-46, Jan. 2000.
dc.relationL. Baringo and A. J. Conejo, “Wind power investment within a market environment,” Appl. Energy, vol. 88, N.° 9, pp. 3239- 3247, Sep. 2011.
dc.relationM. Labbé, P. Marcotte, and G. Savard, “A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing,” Manage. Sci., Dec. 1998.
dc.relationV. V. Kalashnikov, N. I. Kalashnykova, and R. C. Herrera- Maldonado, “Solving the toll optimization problem by a heuristic algorithm based upon sensitivity analysis,” in 2014 IEEE International Conference on Industrial Engineering and Engineering Management, 2014, pp. 682–686.
dc.relationY. Yin and S. Lawphongpanich, “Internalizing emission externality on road networks,” Transp. Res. Part D Transp. Environ., vol. 11, N.° 4, pp. 292-301, Jul. 2006.
dc.relationS. Sharma and T. V Matthew, “Transportation Network Design with Emission Pricing as a Bilevel Optimization Problem,” in Transportation Research Board 86th Annual Meeting, 2007.
dc.relationS. Sharma and T. V Mathew, “Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network,” Environ. Plan. B Plan. Des., vol. 38, N.° 3, pp. 520-538, Jun. 2011.
dc.relationH. Zhang and Z. Gao, “Bilevel programming model and solution method for mixed transportation network design problem,” J. Syst. Sci. Complex., vol. 22, N.° 3, pp. 446-459, Jul. 2009.
dc.relationS.-W. Chiou, “Bilevel programming for the continuous transport network design problem,” Transp. Res. Part B Methodol., vol. 39, N.° 4, pp. 361-383, May 2005.
dc.relationP. Pharkya, A. P. Burgard, and C. D. Maranas, “Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock,” Biotechnol. Bioeng., vol. 84, N.° 7, pp. 887-899, Dec. 2003.
dc.relationY. Chang and N. Sahinidis, “Optimization of metabolic pathways under stability considerations,” Comput. Chem. Eng., 2005.
dc.relationJ. Fortuny-Amat and B. McCarl, “A Representation and Economic Interpretation of a Two-Level Programming Problem,” Journal of the Operational Research Society, vol. 32, N.° 9. pp. 783-792, 1981.
dc.relationJ.-P. Côté, P. Marcotte, and G. Savard, “A bilevel modelling approach to pricing and fare optimisation in the airline industry,” J. Revenue Pricing Manag., vol. 2, N.° 1, pp. 23-36, Apr. 2003.
dc.relationP. Marcotte, G. Savard, and D. Zhu, “Mathematical structure of a bilevel strategic pricing model,” Eur. J. Oper. Res., vol. 193, N.° 2, pp. 552-566, Mar. 2009.
dc.relationJ. A. Keane, “Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model,” IEEE Trans. Power Syst., vol. 24, N.° 2, pp. 1080-1090, May 2009.
dc.relationL. P. Garcés, A. J. Conejo, R. García-Bertrand, and R. Romero, “A Bilevel Approach to Transmission Expansion Planning Within a Market Environment,” IEEE Trans. Power Syst., vol. 24, N.° 3, pp. 1513-1522, Aug. 2009.
dc.relationC. Ruiz and A. J. Conejo, “Pool Strategy of a Producer With Endogenous Formation of Locational Marginal Prices,” IEEE Trans. Power Syst., vol. 24, N.° 4, pp. 1855-1866, Nov. 2009.
dc.relationJ. Arroyo and F. Galiana, “On the solution of the bilevel programming formulation of the terrorist threat problem,” Power Syst. IEEE Trans., 2005.
dc.relationN. Romero, N. Xu, L. K. Nozick, I. Dobson, and D. Jones, “Investment Planning for Electric Power Systems Under Terrorist Threat,” IEEE Trans. Power Syst., vol. 27, N.° 1, pp. 108-116, Feb. 2012.
dc.relationJ. R. T. Arnold, S. N. Chapman, and L. M. Clive, Introduction to Materials Management, 2007.
dc.relationJ. Gang, Y. Tu, B. Lev, J. Xu, W. Shen, and L. Yao, “A multiobjective bi-level location planning problem for stone industrial parks,” Comput. Oper. Res., vol. 56, pp. 8-21, Apr. 2015.
dc.relationH. I. Calvete, C. Galé, and M.-J. Oliveros, “Bilevel model for production–distribution planning solved by using ant colony optimization,” Comput. Oper. Res., vol. 38, N.° 1, pp. 320-327, 2011.
dc.relationD. Yang, J. (Roger) Jiao, Y. Ji, G. Du, P. Helo, and A. Valente, “Joint optimization for coordinated configuration of product families and supply chains by a leader-follower Stackelberg game,” Eur. J. Oper. Res., vol. 246, N.° 1, pp. 263-280, 2015.
dc.relationD. Wang, G. Du, R. J. Jiao, R. Wu, J. Yu, and D. Yang, “A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration,” Int. J. Prod. Econ., vol. 172, pp. 1-18, 2016.
dc.relationM. L. Pinedo, Planning and scheduling in manufacturing and services: Second edition, 2009.
dc.relationT. Kis and A. Kovács, “On bilevel machine scheduling problems,” OR Spectr., vol. 34, N.° 1, pp. 43-68, 2012.
dc.relationJ. K. Karlof and W. Wang, “Bilevel programming applied to the flow shop scheduling problem,” Comput. Oper. Res., vol. 23, N.° 5, pp. 443-451, 1996.
dc.relationZ. Lukač, K. Šorić, and V. V. Rosenzweig, “Production planning problem with sequence dependent setups as a bilevel programming problem,” Eur. J. Oper. Res., vol. 187, N.° 3, pp. 1504-1512, 2008.
dc.relationC. Kasemset and V. Kachitvichyanukul, “A PSO-based procedure for a bi-level multi-objective TOC-based job-shop scheduling problem,” Int. J. Oper. Res., 2012.
dc.relationL. Cheng, Z. Wan, and G. Wang, “Bilevel newsvendor models considering retailer with CVaR objective,” Comput. Ind. Eng., vol. 57, N.° 1, pp. 310-318, Aug. 2009.
dc.relationT. M. Whitin, “Inventory Control and Price Theory,” Manage. Sci., vol. 2, N.° 1, pp. 61-68, Oct. 1955.
dc.relationL. Arbelaéz and L. Ceballos, “El valor en riesgo condicional CVaR como medida coherente de riesgo,” Rev. Ing., 2005.
dc.relationF. Ben Abdelaziz and S. Mejri, “Decentralised bilevel model for shared inventory management,” Prod. Plan. Control, vol. 24, N.° 8-9, pp. 684-701, Sep. 2013.
dc.relationL. Yao and J. Xu, “A class of expected value bilevel programming problems with random coefficients based on rough approximation and its application to a production-inventory system,” Abstr. Appl. Anal., 2013.
dc.relationS. H. Zegordi and M. Mokhlesian, “Coordination of pricing and cooperative advertising for perishable products in a two-echelon supply chain: A bi-level programming approach,” J. Ind. Syst. Eng., vol. 8, N.° 4, pp. 39-60, Sep. 2015.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourcehttp://www.escuelaing.edu.co/revista.htm
dc.titleOptimización binivel: nuevas perspectivas de aplicación en la planeación y control de operaciones e inventarios
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución