dc.contributorCTG-Informática
dc.creatorDaniel Díaz López
dc.creatorBlanco Uribe, María
dc.creatorSantiago Cely, Claudia
dc.creatorTarquino Murgueitio, Daniel
dc.creatorGarcia Garcia, Edwin
dc.creatorNespoli, Pantaleone
dc.creatorGómez Mármol, Félix
dc.date.accessioned2021-05-21
dc.date.accessioned2021-10-01T17:22:49Z
dc.date.accessioned2022-09-29T14:34:10Z
dc.date.available2021-05-21
dc.date.available2021-10-01T17:22:49Z
dc.date.available2022-09-29T14:34:10Z
dc.date.created2021-05-21
dc.date.created2021-10-01T17:22:49Z
dc.date.issued2018
dc.identifier2073-8994
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/1466
dc.identifierdoi.org/10.3390/sym10120669
dc.identifierhttps://doi.org/10.3390/sym10120669
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3775347
dc.description.abstractUndoubtedly, the adoption of the Internet of Things (IoT) paradigm has impacted on our every-day life, surrounding us with smart objects. Thus, the potentialities of this new market attracted the industry, so that many enterprises developed their own IoT platforms aiming at helping IoT services’ developers. In the multitude of possible platforms, selecting the most suitable to implement a specific service is not straightforward, especially from a security perspective. This paper analyzes some of the most prominent proposals in the IoT platforms market-place, performing an in-depth security comparison using five common criteria. These criteria are detailed in sub-criteria, so that they can be used as a baseline for the development of a secure IoT service. Leveraging the knowledge gathered from our in-depth study, both researchers and developers may select the IoT platform which best fits their needs. Additionally, an IoT service for monitoring commercial flights is implemented in two previously analyzed IoT platforms, giving an adequate detail level to represent a solid guideline for future IoT developers.
dc.description.abstractSin lugar a dudas, la adopción del paradigma de Internet de las cosas (IoT) ha impactado en nuestra la vida cotidiana, rodeándonos de objetos inteligentes. Así, las potencialidades de este nuevo mercado atrajeron la industria, por lo que muchas empresas desarrollaron sus propias plataformas de IoT con el objetivo de ayudar a IoT desarrolladores de servicios. En la multitud de plataformas posibles, seleccionar la más adecuada para implementar un servicio específico no es sencillo, especialmente desde una perspectiva de seguridad. Este artículo analiza algunas de las propuestas más destacadas en el mercado de plataformas de IoT, realizando un análisis en profundidad comparación de seguridad utilizando cinco criterios comunes. Estos criterios se detallan en subcriterios, de modo que se pueden utilizar como base para el desarrollo de un servicio de IoT seguro. Aprovechando el conocimiento recopilados de nuestro estudio en profundidad, tanto los investigadores como los desarrolladores pueden seleccionar la plataforma de IoT que se adapta mejor a sus necesidades. Adicionalmente, se implementa un servicio de IoT para monitorear vuelos comerciales en dos plataformas de IoT previamente analizadas, dando un nivel de detalle adecuado para representar una pauta sólida para futuros desarrolladores de IoT.
dc.languageeng
dc.publisherSuiza
dc.relationVolume 10, Número 12, Noviembre 2018
dc.relation34
dc.relation12
dc.relation1
dc.relation10
dc.relationN/A
dc.relationSymmetry
dc.relationGartner. Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That Organizations Must Track to Gain Competitive Advantage; Gartner: Stamford, CT, USA, 2016
dc.relationLi, S.; Da Xu, L.; Zhao, S. The Internet of Things: A Survey; Springer: New York, NY, USA, 2015; pp. 243–259.
dc.relationYelamarthi, K.; Aman, M.S.; Abdelgawad, A. An application-driven modular IoT architecture. Wirel. Commun. Mob. Comput. 2017, 2017, 1350929. [CrossRef] [PubMed]
dc.relationGomes, B.; Muniz, L.; da Silva e Silva, F.J.; Ríos, L.E.T.; Endler, M. A comprehensive cloud-based IoT software infrastructure for Ambient Assisted Living. In Proceedings of the 2015 International Conference on Cloud Technologies and Applications (CloudTech), Marrakech, Morocco, 2–4 June 2015; pp. 1–8.
dc.relationYaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M. Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges. IEEE Wirel. Commun. 2017, 24, 10–16. [CrossRef]
dc.relationPołap, D.; K ˛esik, K.; Ksi ˛azek, K.; Wo´zniak, M. Obstacle Detection as a Safety Alert in Augmented Reality ˙ Models by the Use of Deep Learning Techniques. Sensors 2017, 17, 2803. [CrossRef] [PubMed]
dc.relationWo´zniak, M.; Połap, D. Object detection and recognition via clustered features. Neurocomputing 2018, 320, 76–84. [CrossRef]
dc.relationZarpelo, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A Survey of Intrusion Detection in Internet of Things. J. Netw. Comput. Appl. 2017, 84, 25–37. [CrossRef]
dc.relationAbdelgawad, A.; Yelamarthi, K. Internet of things (IoT) platform for structure health monitoring. Wirel. Commun. Mob. Comput. 2017, 2017, 6560797. [CrossRef]
dc.relationPołap, D.; Winnicka, A.; Serwata, K.; K ˛esik, K.; Wo´zniak, M. An Intelligent System for Monitoring Skin Diseases. Sensors 2018, 18, 2552. [CrossRef] [PubMed]
dc.relationCharmonman, S.; Mongkhonvanit, P. Special consideration for Big Data in IoE or Internet of Everything. In Proceedings of the 2015 13th International Conference on ICT and Knowledge Engineering (ICT Knowledge Engineering 2015), Bangkok, Thailand, 18–20 November 2015; pp. 147–150.
dc.relationWollschlaeger, M.; Sauter, T.; Jasperneite, J. The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [CrossRef]
dc.relationJu, J.; Kim, M.S.; Ahn, J.H. Prototyping Business Models for IoT Service. Procedia Comput. Sci. 2016, 91, 882–890. [CrossRef]
dc.relationGupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]
dc.relationSarkar, S.; Chatterjee, S.; Misra, S. Assessment of the Suitability of Fog Computing in the Context of Internet of Things. IEEE Trans. Cloud Comput. 2018, 6, 46–59. [CrossRef]
dc.relationNespoli, P.; Papamartzivanos, D.; Gómez Mármol, F.; Kambourakis, G. Optimal Countermeasures Selection against Cyber Attacks: A Comprehensive Survey on Reaction Frameworks. IEEE Commun. Surv. Tutor. 2018, 20, 1361–1396. [CrossRef]
dc.relationAl-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
dc.relationXu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [CrossRef]
dc.relationPerera, C.; Liu, C.H.; Jayawardena, S. The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey. IEEE Trans. Emerg. Top. Comput. 2015, 3, 585–598. [CrossRef]
dc.relationGanguly, P. Selecting the right IoT cloud platform. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; pp. 316–320.
dc.relationGuth, J.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Reinfurt, L. Comparison of IoT platform architectures: A field study based on a reference architecture. In Proceedings of the 2016 Cloudification of the Internet of Things (CIoT), Paris, France, 23–25 November 2016; pp. 1–6.
dc.relationDerhamy, H.; Eliasson, J.; Delsing, J.; Priller, P. A survey of commercial frameworks for the Internet of Things. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–8.
dc.relationYaqoob, I.; Ahmed, E.; ur Rehman, M.H.; Ahmed, A.I.A.; Al-garadi, M.A.; Imran, M.; Guizani, M. The rise of ransomware and emerging security challenges in the Internet of Things. Comput. Netw. 2017, 129, 444–458. [CrossRef]
dc.relationAmmar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27. [CrossRef]
dc.relationDíaz López, D.; Blanco Uribe, M.; Santiago Cely, C.; Vega Torres, A.; Moreno Guataquira, N.; Morón Castro, S.; Nespoli, P.; Gómez Mármol, F. Shielding IoT against cyber-attacks: An event-based approach using SIEM. Wirel. Commun. Mob. Comput. 2018, 2018, 3029638. [CrossRef]
dc.relationBeltran, V.; Skarmeta, A.; Ruiz, P. An ARM-Compliant Architecture for User Privacy in Smart Cities: SMARTIE—Quality by Design in the IoT. Wirel. Commun. Mob. Comput. 2017, 2017, 3859836. [CrossRef]
dc.relationFerrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. Authentication Protocols for Internet of Things: A Comprehensive Survey. Secur. Commun. Netw. 2017, 2017, 6562953. [CrossRef]
dc.relationNespoli, P.; Zago, M.; Huertas Celdrán, A.; Gil Pérez, M.; Gómez Mármol, F.; García Clemente, F.J. A Dynamic Continuous Authentication Framework in IoT-Enabled Environments. In Proceedings of the Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2018), Valencia, Spain, 15–18 October 2018
dc.relationBoneh, D.; Sahai, A.; Waters, B. Functional encryption: Definitions and challenges. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); LNCS: Berlin, Germany, 2011; Volume 6597, pp. 253–273.
dc.relationSaxena, N.; Choi, B.J.; Lu, R. Authentication and Authorization Scheme for Various User Roles and Devices in Smart Grid. IEEE Trans. Inf. Forensics Secur. 2016, 11, 907–921. [CrossRef]
dc.relationGoldstein, J.; Pagan, F.; Short, J. Systems and Methods for Providing Dynamic Network Authorization Authentication and Accounting. Patent EP20000973771, 20 October 2000.
dc.relationSforzin, A.; Gómez Mármol, F.; Conti, M.; Bohli, J.M. RPiDS: Raspberry Pi IDS—A Fruitful Intrusion Detection System for IoT. In Proceedings of the 13th IEEE International Conference on Advanced and Trusted Computing (ATC 2016), Toulouse, France, 18–21 July 2016; pp. 440–448.
dc.relationUseche Peláez, D.; Díaz López, D.; Nespoli, P.; Gómez Mármol, F. TRIS: A Three-Rings IoT Sentinel to protect against cyber-threats. In Proceedings of the Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2018), Valencia, Spain, 15–18 October 2018.
dc.relationHunke, N.; Rüßmann, M.; Schmieg, F.; Bhatia, A.; Kalra, N. Winning in IoT: It’s All about the Business Processes. Available online: https://www.bcg.com/en-co/publications/2017/hardware-software-energyenvironment-winning-in-iot-all-about-winning-processes.aspx (accessed on 25 October 2018).
dc.relationLucero, S. IoT Platforms: Enabling the Internet of Things; IHS Technology: Phoenix, AZ, USA, 2016.
dc.relationWootton, C. Samsung ARTIK Reference: The Definitive Developers Guide; Apress: New York, NY, USA, 2016; p. 409
dc.relationWootton, C. Beginning Samsung ARTIK—A Guide to Developers; Apress: New York, NY, USA, 2016; p. 396.
dc.relationKurniawan, A. Learning AWS IoT: Effectively Manage Connected Devices on the AWS Cloud Using Services Such as AWS Greengrass, AWS Button, Predictive Analytics and Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2018; p. 278
dc.relationTarneberb, W.; Chandrasekaran, V.; Humpherey, M. Experiences Creating a Framework for Smart Traffic Control using AWS IoT. In Proceedings of the 2016 ACM 9th International Conference on Utility and Cloud Computing, Shanghai, China, 6–9 December 2016; pp. 63–69.
dc.relationAzraq, A.; Chughtai, S.; Mashhour, A.; V Nguyen, D.; Dos Santos, R.M. Enhancing the IBM Power Systems Platform with IBM Watson Services; IBM Redbooks: New York, NY, USA, 2018; p. 218.
dc.relationRavulavaru, A. Enterprise Internet of Things Handbook: Build End-to-End IoT Solutions Using Popular IoT Platforms; Packt Publishing: Birmingham, UK, 2018.
dc.relationPratimRay, P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46.
dc.relationVossen, G.; Schonthaler, F.; Dillon, S. The Web at Graduation and Beyond: Business Impacts and Developments; Springer: New York, NY, USA, 2016
dc.relationEVRYTHNG IoT Smart Products Platform. Available online: https://evrythng.com/ (accessed on 12 July 2018).
dc.relationGuinard, D.; Trifa, V. Building the Web of Things; Manning Publications Co.: Greenwich, CT, USA, 2016.
dc.relationDweet—Data Sharing for IoT. Available online: https://dweet.io/ (accessed on 12 September 2018).
dc.relationFreeboard—Dashboards for the Internet of Things. Available online: https://freeboard.io/ (accessed on 1 September 2018)
dc.relationBlackstock, M.; Lea, R. Toward a Distributed Data Flow Platform for the Web of Things (Distributed Node-RED). In Proceedings of the 5th International Workshop on Web of Things (WoT ’14), Cambridge, MA, USA, 8 October 2014; pp. 34–39
dc.relationYasumoto, K.; Yamaguchi, H.; Shigeno, H. Survey of Real-Time Processing Technologies of IoT Data Streems. J. Inf. Process. 2016, 24, 195–202.
dc.relationKamal, R. Internet of Thinks: Architecture and Design Principles; McGraw Hill Education: New York, NY, USA, 2017.
dc.relationKocovic, P.; Behringer, R.; Ramachandran, M.; Mihajlovic, R. Emerging Trends and Applications of the Internet of Things; IGI Global: Hershey, PA, USA, 2017.
dc.relationMinerauda, J.; Mazhelisb, O.; Suc, X.; Tarkomaa, S. A gap analysis of Internet-of-Things platforms. Comput. Commun. 2016, 89–90, 5–16. [CrossRef]
dc.relationMavromoustakis, C.X.; Mastorakis, G.; Dobre, C. Advances in Mobile Cloud Computing and Big Data in the 5G Era; Springer: New York, NY, USA, 2016.
dc.relationMartino, B.D.; Li, K.C.; Yang, L.T.; Esposito, A. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives; Springer: New York, NY, USA, 2017
dc.relationGeng, H. Internet of Things and Data Analytics Handbook; John Wiley & Sons: New York, NY, USA, 2017
dc.relationSpitzer, C.; Ferrell, U.; Ferrell, T. Digital Avionics Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017.
dc.relationSoro, A.; Ambe, A.H.; Brereton, M. Minding the Gap: Reconciling Human and Technical Perspectives on the IoT for Healthy Ageing. Wirel. Commun. Mob. Comput. 2017, 2017, 7439361. [CrossRef]
dc.relationCao, T.D.; Hoang, H.H.; Huynh, H.X.; Nguyen, B.M.; Pham, T.V.; Tran-Minh, Q.; Tran, V.T.; Truong, H.L. Iot services for solving critical problems in vietnam: A research landscape and directions. IEEE Internet Comput. 2016, 20, 76–81. [CrossRef]
dc.relationThacker, S.; Pant, R.; Hall, J.W. System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures. Reliab. Eng. Syst. Saf. 2017, 167, 30–41. [CrossRef]
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dc.sourcehttps://www.mdpi.com/2073-8994/10/12/669
dc.titleDeveloping Secure IoT Services: A Security-Oriented Review of IoT Platforms
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución