dc.contributorMatemáticas
dc.creatorPachon Rubiano, Néstor Raúl
dc.date.accessioned2021-05-05
dc.date.accessioned2021-10-01T17:20:45Z
dc.date.accessioned2022-09-29T14:33:48Z
dc.date.available2021-05-05
dc.date.available2021-10-01T17:20:45Z
dc.date.available2022-09-29T14:33:48Z
dc.date.created2021-05-05
dc.date.created2021-10-01T17:20:45Z
dc.date.issued2017
dc.identifier1311-8080
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/1395
dc.identifier10.12732/ijpam.v114i2.10
dc.identifierhttp://dx.doi.org/10.12732/ijpam.v114i2.10
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3775203
dc.description.abstractIn this paper we introduce two new ideal topological spaces, which are strong forms of the QHC spaces and the I -QHC spaces. We present several properties and characterizatios of these new spaces.
dc.description.abstractEn este trabajo introducimos dos nuevos espacios topológicos ideales, que son formas fuertes formas fuertes de los espacios QHC y los espacios I -QHC. Presentamos varias propiedades y caracterizaciones de estos nuevos espacios.
dc.languageeng
dc.publisherPublicaciones académicas Ltd.
dc.publisherColombia
dc.relationInternational Journal of Pure and Applied Mathematics, Volume 114 No. 2 2017, 277-292.
dc.relation292
dc.relation2
dc.relation277
dc.relation114
dc.relationN/A
dc.relationInternational Journal of Pure and Applied Mathematics
dc.relationJ. Dontchev, M. Ganster and D. A. Rose, Ideal resolvability, Top. and its Appl., 93, No 1 (1999), 1-16, doi: 10.1016/S0166-8641(97)00257-5
dc.relationM. K. Gupta and T. Noiri, C-compactness modulo an ideal, Int. Jour. of Math. and Math. Sci., 2006 (2006), 1-12, doi: 10.1155/IJMMS/2006/78135.
dc.relationA. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. of Egypt, 53 (1982), 47-53.
dc.relationR. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation. Thesis, Univ. of Calif. at Santa Barbara, California, 1967.
dc.relationO. Njastad, On some classes of nearly open subsets, Pacific J. Math., 15 (1965), 961-970, doi: 10.2140/pjm.1965.15.961.
dc.relationN. R. Pach´on, New forms of strong compactness in terms of ideals, Int. Jour. of Pure and App. Math., 106, No 2 (2016), 481-493, doi: 10.12732/ijpam.v106i2.12.
dc.relationN. R. Pach´on, C(I)-compact and I-QHC spaces, Int. Jour. of Pure and App. Math., 108, No 2 (2016), 199-214, doi: 10.12732/ijpam.v108i2.2.
dc.relationJ. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc., 138 (1969), 159-170, doi: 10.1090/S0002-9947-1969-0238268-4.
dc.relationV. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Mathematica Hungarica, 108, No 3 (2005), 197-205, doi: 10.1007/s10474- 005-0220-0.
dc.relationG. Viglino, C-compact spaces, Duke Mathematical Journal, 36, No 4 (1969), 761-764, doi: 10.1215/S0012-7094-69-03691-6.
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.sourcehttps://ijpam.eu/contents/2017-114-2/10/
dc.titleTWO NEW FORMS OF QUASI-H-CLOSEDNESS VIA IDEALS
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución