dc.contributorRomero Motta, Enrique
dc.contributorCentro de Investigaciones en Manufactura y Servicios - CIMSER
dc.creatorMurillo Varón, Carol Estefanie
dc.date.accessioned2022-05-06T17:06:54Z
dc.date.accessioned2022-09-29T14:33:31Z
dc.date.available2022-05-06T17:06:54Z
dc.date.available2022-09-29T14:33:31Z
dc.date.created2022-05-06T17:06:54Z
dc.date.issued2017-11-10
dc.identifierhttps://repositorio.escuelaing.edu.co/handle/001/2049
dc.identifierUniversidad de La Sabana
dc.identifierIntellectum Repositorio Universidad de La Sabana
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3775096
dc.description.abstractEl común denominador de las compañías es el crecimiento y la permanencia en el mercado, lo cual se logra a través de la claridad en su estrategia competitiva y la flexibilidad ante los cambios de la demanda, los clientes o el entorno. Sin considerar particularmente cual estrategia de operaciones es adoptada por la compañía, la finalidad generalmente es buscar la satisfacción del cliente, para lo cual la entrega oportuna y el costo propicio del producto sin lugar a duda son atributos dominantes. Es importante entonces resaltar que las compañías deberán establecer la operación de la cadena de suministro de manera que se cumpa el nivel de servicio esperado por el cliente, garantizando la eficiencia en los costos. Uno de los problemas más comunes que enfrentan las compañías cuando deben ser flexibles, es el método usado para la planeación de la producción, tradicionalmente, el control de la producción se basa en un Sistema de Empujar “push”, el cual genera inventarios basados en un pronóstico de demanda que determina los tamaños de los lotes por comprar y almacenar. A medida que se empuja el pedido a través del proceso de producción se crean faltantes o sobrantes de inventario en la cadena de suministro tanto en las materias primas, inventario en proceso y producto terminado que conlleva a costos operacionales adicionales. Con el fin de abordar el problema expuesto, las organizaciones buscan nuevas técnicas para apalancar la estrategia de operaciones, aplicando en su manufactura el Sistema de Halar “pull” conocido como Justo a Tiempo “Just-in-time JIT”, donde se fabrica únicamente lo requerido y justo en el tiempo necesario; esta técnica hace parte de la filosofía Japonesa Manufactura Esbelta “Lean Manufacturing” que permite incrementar la eficiencia de la producción, reduciendo el nivel de desperdicios en materiales, tiempo y esfuerzo involucrado en el proceso.
dc.description.abstractThe common denominator of the companies is growth and permanence in the market, which is achieved through clarity in their competitive strategy and flexibility in the face of changes in demand, customers or the environment. Regardless of which operations strategy is adopted by the company, the goal is generally to seek customer satisfaction, for which timely delivery and cost-effective product are undoubtedly dominant attributes. It is therefore important to highlight that companies must establish the operation of the supply chain in such a way that the level of service expected by the client is met, guaranteeing cost efficiency. One of the most common problems that companies face when they must be flexible is the method used for production planning. Traditionally, production control is based on a Push System, which generates inventories based on a demand forecast that determines the lot sizes to be purchased and stored. As the order is pushed through the production process, shortages or surplus inventory are created in the supply chain for raw materials, in-process inventory, and finished goods, leading to additional operational costs. In order to address the above problem, organizations seek new techniques to leverage the operations strategy, applying in their manufacturing the pull system known as Just in Time "Just-in-time JIT", where only what is required and just in the necessary time; This technique is part of the Japanese Lean Manufacturing philosophy that allows increasing production efficiency, reducing the level of waste in materials, time and effort involved in the process.
dc.languagespa
dc.publisherCentro de Investigaciones en Manufactura y Servicios - CIMSER Datos básicos
dc.publisherIngeniería Industrial
dc.relationN/A
dc.relationAghajani, M., Keramati, A. & Moghada, R. T. (2016). A mathematical programming model for cellular manufacturing system controlled by Kanban with rework consideration. International journal advanced manufacturing technology. 83, 1377-1394.
dc.relationAlabas, C., Altiparmak, F. & Dengiz, B. J. (2002). A comparison of the performance of artificial intelligence techniques for optimizing the number of kanbans. Journal of the operational research society. 53, 907-914.
dc.relationBernal, C. (2016). Metodología de la investigación. Pearson educación de Colombia S.A.S. 4, 162-169.
dc.relationDonald W. (2003). Inventory Control and Management, 2nd Edition. John Wiley & Sons Ltd.
dc.relationFukukawa, T., Hong, S.C. (1993). The determination of the optimal number of kanbans in a just-in-time production system. Computers and Industrial Engineering, 24(4), 326-344.
dc.relationGilliam, D., Taylor-Jones, S., & Costanza, J. R. (2005). The Quantum Leap: Next Generation: The Manufacturing Strategy for Business. Boca Raton, Fla: J. Ross Publishing.
dc.relationGross, J. M., & McInnis, K. R. (2003). Kanban Made Simple: Demystifying and Applying Toyota's Legendary Manufacturing Process. New York: AMACOM.
dc.relationHemamalini, B. (2000). Determination of the number of containers, production kanbans and withdrawal kanbans; and scheduling in Kanban flowshops. Part I & II. International Journal of Production Research. 38(11), 2549-2572.
dc.relationHillier, F., & Lieberman, G. (2010). Introducción a la investigación de operaciones. McGrawHill interamericana editors, S.A. C.V. 9, 772- 832.
dc.relationHou, T.H., & Hu W. C. (2011). An integrated MOGA approach to determine the pareto – optimal kanban number and size for a JIT system. Expert system with applications. 38, 5912-5918.
dc.relationHurnon, R. D. (1997). An example of simulation optimisation using a neural network metamodel finding the optimum number of kanbans in a manufacturing system. Journal of the operational research society. 48, 1105- 1112.
dc.relationKrajewski, L., Ritzman, L., & Malhotra, M. (2013). Administración de operaciones. Proceso y cadena de suministro, 10, 275-293, 307-430.
dc.relationKumar, C. S., & Panneerselvam, R. (2007). Literature review of JIT-KANBAN system, International Journal of advanced Manufacturing Technology. 32, 393-408.
dc.relationLasa, I. S., Laburu C. O., & Vila R. (2008). An Evaluation of the Value Stream Mapping Tool. Business Process Management Journal. 14(1), 39–52.
dc.relationLavoie, P., Gharbi A., & KenNe J. P. (2008). A comparative study of pull control mechanisms for unreliable homogenous transfer lines. International journal of production economics. 124(1), 241–251.
dc.relationMarkham, I. S., Mathieu, R. G., & Wray, B. A. (1998). A rule induction approach for determining the number of Kanbans in a just-in-time production system. Computers ind. Engng, 34(4), 717-727.
dc.relationMatta, A., Dallery, Y., & Di Mascolo, M. (2005). Analysis of assembly systems controlled with Kanbans. European Journal of Operational Research, 166, 310-336.
dc.relationModak, N.M., Panda, S., & Sana, S. S. (2015). Optimal Just in Time buffer inventory for regular preventive maintenance. Review of Applied Management. 13, 135-144.
dc.relationMonden, Y. (1983). The Toyota production system. Industrial Engineering and Management Press, Norcross, GA.
dc.relationMonden, Y. (1996). El just in time hoy en toyota. Bilbao: Ediciones Deusto.
dc.relationMoore, R. (2007). Selecting the right manufacturing improvement tools. Amsterdam: Elsevier ButterworthHeinemann.
dc.relationMoran, T, J., & Troutt, M. (2009). A simulation study of economic production quantity lot size to Kanban for a single line production system under various setup time with annual setup cost as performance metric. Journal of business and economic research. 7(10).
dc.relationOhno, T. (1991). El sistema de producción Toyota: más allá de la producción a gran escala. Barcelona: Ediciones Gestión.
dc.relationOhno, K., Nakashima, K., & Kojima, K. (1995). Optimal number of two kinds of Kanbans in a JIT production system. Int J Prod. 33, 1387-1401.
dc.relationPanayiotou, C.G., & Cassadras, C.G., (1999). Optimization of Kanban-based manufacturing systems. Automatica. 35, 1521-1533.
dc.relationRabbani, M., & Layegh, R. (2009). Determination of number of kanbans in a supply chain system via memetic algorithm. Advances in engineering software. 40, 431-437.
dc.relationRothlauf, F. (1998). Design of Modern Heuristics. Springer science business media.
dc.relationRahman, N. A., Sharif, S. M., & Esa, M. M. (2013). Lean Manufacturing case study with Kanban system implementation. International conference on economics and business research, 7, 174-180.
dc.relationRees. L.P., Philipoom, P.R., Taylor, B.W., & Huang, P.Y. (1987). Dynamically adjusting the number of Kanbans in a just-in-time production system using estimated values of lead time. IIE Transactions 19 (2), 199-207.
dc.relationSarker, B. R., & Balan, C. V. (1999). Operations planning for a multi-stage kanban system. European journal of operational research. 112(2), 284-303.
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://intellectum.unisabana.edu.co/handle/10818/31950?show=full
dc.titleSistema de producción Kanban para el control de los inventarios en la línea de producción del candado tipo alemán 870 en Assa Abloy Colombia
dc.typeTrabajo de grado - Especialización


Este ítem pertenece a la siguiente institución