dc.contributor | Ecitrónica | |
dc.creator | Castellanos, German | |
dc.creator | Deruyck, Margot | |
dc.creator | Martens, Luc | |
dc.creator | Joseph, Wout | |
dc.date.accessioned | 2021-05-13T13:27:35Z | |
dc.date.accessioned | 2021-10-01T17:19:09Z | |
dc.date.accessioned | 2022-09-29T14:33:01Z | |
dc.date.available | 2021-05-13T13:27:35Z | |
dc.date.available | 2021-10-01T17:19:09Z | |
dc.date.available | 2022-09-29T14:33:01Z | |
dc.date.created | 2021-05-13T13:27:35Z | |
dc.date.created | 2021-10-01T17:19:09Z | |
dc.date.issued | 2019 | |
dc.identifier | 1424-8220 | |
dc.identifier | https://repositorio.escuelaing.edu.co/handle/001/1427 | |
dc.identifier | 10.3390/s19153342 | |
dc.identifier | https://doi.org/10.3390/s19153342 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3774882 | |
dc.description.abstract | Today’s wireless networks provide us reliable connectivity. However, if a disaster occurs, the whole network could be out of service and people cannot communicate. Using a fast deployable temporally network by mounting small cell base stations on unmanned aerial vehicles (UAVs) could solve the problem. Yet, this raises several challenges. We propose a capacity-deployment tool to design the backhaul network for UAV-aided networks and to evaluate the performance of the backhaul network in a realistic scenario in the city center of Ghent, Belgium. This tool assigns simultaneously resources to the ground users—access network—and to the backhaul network, taking into consideration backhaul capacity and power restrictions. We compare three types of backhaul scenarios using a 3.5 GHz link, 3.5 GHz with carrier aggregation (CA) and the 60 GHz band, considering three different types of drones. The results showed that an optimal UAV flight height (80 m) could satisfy both access and backhaul networks; however, full coverage was difficult to achieve. Finally, we discuss the influence of the flight height and the number of requesting users concerning the network performance and propose an optimal configuration and new mechanisms to improve the network capacity, based on realistic restrictions. | |
dc.description.abstract | Las redes inalámbricas actuales nos proporcionan una conectividad fiable. Sin embargo, si se produce una catástrofe, toda la red podría quedar fuera de servicio y las personas no podrían comunicarse. El uso de una red de despliegue rápido y temporal mediante el montaje de estaciones base de células pequeñas en vehículos aéreos no tripulados (UAV) podría resolver el problema. Sin embargo, esto plantea varios retos. Proponemos una herramienta de despliegue de capacidad para diseñar la red de backhaul para redes asistidas por UAV y para evaluar el rendimiento de la red de backhaul en un escenario realista en el centro de la ciudad de Gante, Bélgica. Esta herramienta asigna simultáneamente recursos a los usuarios de tierra -red de acceso- y a la red backhaul, teniendo en cuenta la capacidad de backhaul y las restricciones de potencia. Comparamos tres tipos de escenarios de backhaul utilizando un enlace de 3,5 GHz, 3,5 GHz con agregación de portadoras (CA) y la banda de 60 GHz, considerando tres tipos diferentes de drones. Los resultados mostraron que una altura de vuelo óptima del UAV (80 m) podía satisfacer tanto las redes de acceso como las de backhaul; sin embargo, era difícil lograr una cobertura total. Por último, se analiza la influencia de la altura de vuelo y el número de usuarios solicitantes en el rendimiento de la red y se propone una configuración óptima y nuevos mecanismos para mejorar la capacidad de la red, basados en restricciones realistas. | |
dc.language | eng | |
dc.publisher | MDPI Open Access Journals | |
dc.publisher | Basilea, Suiza. | |
dc.relation | Sensors 2019, 19, 3342. | |
dc.relation | 16 | |
dc.relation | 15 | |
dc.relation | 1 | |
dc.relation | 19 | |
dc.relation | N/A | |
dc.relation | Sensors | |
dc.relation | Statement from Digicel on Haiti Earthquake. Available online: https://web.archive.org/web/20100820123624/http://www.indiaprwire.com/pressrelease/telecommunications/2010011441347.htm (accessed on 19 June 2019). | |
dc.relation | Miller, F.P.; Vandome, A.F.; McBrewster, J. Damage to Infrastructure in the 2010 Haiti Earthquake; Alphascript: San Carlos, CA, USA, 2010. | |
dc.relation | FEMA. 2017 Hurricane Season FEMA After-Action Report; FEMA: Washington, DC, USA, 2017. | |
dc.relation | Haryanto, A.T. Dampak Gempa Donggala Bikin 1.678 BTS Tak Berfungsi. Available online: https://inet.detik.com/telecommunication/d-4234684/dampak-gempa-donggala-bikin-1678-bts-tak-berfungsi (accessed on 19 June 2019). | |
dc.relation | Deruyck, M.; Wyckmans, J.; Joseph, W.; Martens, L. Designing UAV-aided emergency networks for large-scale disaster scenarios. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 79. | |
dc.relation | Merwaday, A.; Tuncer, A.; Kumbhar, A.; Guvenc, I. Improved Throughput Coverage in Natural Disasters: Unmanned Aerial Base Stations for Public-Safety Communications. IEEE Veh. Technol. Mag. 2016, 11, 53–60. | |
dc.relation | Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K. UAV-Assisted Emergency Networks in Disasters. IEEE Wirel. Commun. 2019, 26, 45–51. | |
dc.relation | Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015. | |
dc.relation | Deruyck, M.; Wyckmans, J.; Martens, L.; Joseph, W. Emergency ad-hoc networks by using drone mounted base stations for a disaster scenario. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016. | |
dc.relation | Cicek, C.T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. UAV Base Station Location Optimization for Next Generation Wireless Networks: Overview and Future Research Directions. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019. | |
dc.relation | Deruyck, M.; Marri, A.; Mignardi, S.; Martens, L.; Joseph, W.; Verdone, R. Performance evaluation of the dynamic trajectory design for an unmanned aerial base station in a single frequency network. In Proceedings of the IEEE 28th International Symposium on Personal, Indoor and Mobile Radio Communications, Montreal, QC, Canada, 8–13 October 2017. | |
dc.relation | Gangula, R.; Esrafilian, O.; Gesbert, D.; Roux, C.; Kaltenberger, F.; Knopp, R. Flying Rebots: First Results on an Autonomous UAV-Based LTE Relay Using Open Airinterface. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018. | |
dc.relation | Kawamoto, Y.; Nishiyama, H.; Kato, N.; Ono, F.; Miura, R. Toward Future Unmanned Aerial Vehicle Networks: Architecture, Resource Allocation and Field Experiments. IEEE Wirel. Commun. 2019, 26, 94–99. | |
dc.relation | Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient Deployment of Multiple Unmanned Aerial Vehicles for Optimal Wireless Coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. | |
dc.relation | Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. | |
dc.relation | Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. arXiv 2018, arXiv:1803.00680. | |
dc.relation | Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D Wireless Cellular Network. IEEE Trans. Wirel. Commun. 2018, 18, 357–372. | |
dc.relation | Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tutor. 2016, 18, 1123–1152. | |
dc.relation | Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Commun. 2019, 26, 120–127. | |
dc.relation | Huang, H.; Savkin, A.V. A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and Minimum Interference in Cellular Networks. IEEE Trans. Ind. Inform. 2019, 15, 2638–2647. | |
dc.relation | Wu, Q.; Liu, L.; Zhang, R. Fundamental Trade-offs in Communication and Trajectory Design for UAV-Enabled Wireless Network. IEEE Wirel. Commun. 2019, 26, 36–44. | |
dc.relation | Cicek, C.T.; Kutlu, T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. Backhaul-Aware Placement of a UAV-BS with Bandwidth Allocation for User-Centric Operation and Profit Maximization. arXiv 2018, arXiv:1810.12395. | |
dc.relation | Lime demonstrates FPRF Transceivers at Mobile World Congress Shanghai. Available online: https://limemicro.com/news/lime-demonstrate-fprf-transceivers-at-mobile-world-congress-shanghai/ (accessed on 2 May 2019). | |
dc.relation | Zhang, C.; Zhang, W.; Wang, W.; Yang, L.; Zhang, W. Research Challenges and Opportunities of UAV Millimeter-Wave Communications. IEEE Wirel. Commun. 2019, 26, 58–62. | |
dc.relation | Galkin, B.; Kibiłda, J.; DaSilva, L.A. Backhaul for Low-Altitude UAVs in Urban Environments. arXiv 2017, arXiv:1710.10807. | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.source | https://www.mdpi.com/1424-8220/19/15/3342/htm | |
dc.title | Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency Networks | |
dc.type | Artículo de revista | |