dc.contributor | Matemáticas | |
dc.creator | Agredo, J. | |
dc.creator | Leon, Y. | |
dc.creator | Osorio, J. | |
dc.creator | Peña, A. | |
dc.date.accessioned | 2019 | |
dc.date.accessioned | 2021-10-01T17:20:50Z | |
dc.date.accessioned | 2022-09-29T14:32:37Z | |
dc.date.available | 2019 | |
dc.date.available | 2021-10-01T17:20:50Z | |
dc.date.available | 2022-09-29T14:32:37Z | |
dc.date.created | 2019 | |
dc.date.created | 2021-10-01T17:20:50Z | |
dc.date.issued | 2019 | |
dc.identifier | 1846579X | |
dc.identifier | https://repositorio.escuelaing.edu.co/handle/001/1391 | |
dc.identifier | 10.7153/jmi-2019-13-38 | |
dc.identifier | https://dx.doi.org/10.7153/jmi-2019-13-38 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3774735 | |
dc.description.abstract | We obtain a generalization of Buzano’s inequality of vectors in Hilbert spaces , using
the theory of algebraic probability spaces. In particular, we extend a result of Dragomir given
in [7]. Applications for numerical inequalities for n- tuples of bounded linear operators and
functions of operators defined by double power series are also generalized. | |
dc.description.abstract | Obtenemos una generalización de la desigualdad de Buzano de vectores en espacios de Hilbert , utilizando
la teoría de los espacios algebraicos de probabilidad. En particular, extendemos un resultado de Dragomir dado
en [7]. Aplicaciones para desigualdades numéricas para n-tuplas de operadores lineales acotados y
funciones de operadores definidos por series de potencias dobles también se generalizan.
Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator | |
dc.language | eng | |
dc.publisher | Croacia | |
dc.relation | Journal of Mathematical Inequalities ISSN: 1846-579X, 2019 vol:13 fasc: 2 págs: 585 - 599 | |
dc.relation | 599 | |
dc.relation | 2 | |
dc.relation | 585 | |
dc.relation | 13 | |
dc.relation | N/A | |
dc.relation | Journal of Mathematical Inequalities | |
dc.relation | J. AGREDO, F. FAGNOLA, R. REBOLLEDO, Decoherence free subspaces of a quantum Markov semigroup, J. Math. Phys., 55, 112201 (2014). | |
dc.relation | S. ATTAL, Elements of Operators Algebras and Modular Theory, Open Quantum Systems I: The Hamiltonian approach, Springer Verlag, Lectures Notes in Mathematics, 2006, 1–105. | |
dc.relation | O. BRATELLI, D. W. ROBINSON, Operator Algebras and Quantum Statistical Mechanics, SpringerVerlag 1, 1987. | |
dc.relation | M. L. BUZANO, Generalizzazione della diseguaglianza di Cauchy–Schwartz, Rend. Sem. Mat. Univ. e Politech. Torino, 31, (1974), 405–409 | |
dc.relation | A. CONNES, Noncommutative Geometry, Academic Press, 1994 | |
dc.relation | F. D’ANDREA, Pythagoras Theorem in Noncommutative Geometry, Proceedings of the Conference on Optimal Transport and Noncommutative Geometry, Besancon 2014, Available at arXiv:1507.08773. | |
dc.relation | S. S. DRAGOMIR, Generalizations of Buzano inequality for n -tuples of vectors in inner product spaces with applications, Tbilisi Mathematical Journal, 10, 2 (2017), 29–41. | |
dc.relation | S. S. DRAGOMIR, M. KHOSRAVI, M. S. MOSLEHIAN, Bessel type inequalities in Hilbert modules, Linear Multilinear Algebra, 58, 8 (2010), 967–975 | |
dc.relation | S. S. DRAGOMIR, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math., 39, 1 (2008), 1–7. | |
dc.relation | S. S. DRAGOMIR, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demostratio Math., 40, 2 (2007), 411–417. | |
dc.relation | S. S. DRAGOMIR, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Inequal. Pure Appl. Math.; 7, 1 (2006), Article 14. | |
dc.relation | S. S. DRAGOMIR, I. SANDOR ´ , Some inequalities in pre-Hilbertian spaces, Studia Univ. Babes-Bolyai Math., 32, 1 (1987), 71–78. | |
dc.relation | S. S. DRAGOMIR, Some refinements of Schwartz inequality, Simpozionul de Matematici si Aplicatii, Timisoaria, Romania, 1-2 Noiembrie, (1985), 13–16. | |
dc.relation | F. FAGNOLA, V. UMANIT‘A, Generic quantum Markov semigroups, cycle decomposition and deviation from equilibrium, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 3 (2012), 1–17. | |
dc.relation | F. FAGNOLA, R. REBOLLEDO, Algebraic conditions for convergence of a quantum Markov semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11, 3 (2008), 467–474. | |
dc.relation | F. FAGNOLA, R. REBOLLEDO, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys., 43, 2 (2002). | |
dc.relation | F. FAGNOLA, Quantum Markov semigroups and quantum Markov flows, Proyecciones., 18, 3 (1999), 1–144. | |
dc.relation | J. I. FUJII, M. FUJII, M. S. MOSLEHIAN, J. E. PECARIC, Y. SEO, Reverses Cauchy-Schwarz type inequalities in pre-inner product C∗ -modules, Hokkaido Math. J., 40, (2011), 1–17. | |
dc.relation | M. FUJII, Operator-valued inner product and operator inequalities, Banach J. Math. Anal., 2, 2 (2008), 59–67. | |
dc.relation | M. FUJII, F. KUBO, Buzano’s inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117, (1993), 359–361. | |
dc.relation | D. ILISEVIC, S. VAROSANEC, On the Cauchy-Schwarz inequality and its reverse in semi-inner product C∗ -modules, Banach J. Math. Anal., 1, (2007), 78–84. | |
dc.relation | M. S. MOSLEHIAN, L. - E. PERSSON, Reverse Cauchy-Schwarz inequalities for positive C∗ -valued sesquilinear forms, Math. Inequal. Appl., 4, 12, (2009), 701–709. | |
dc.relation | A. HORA, N. OBATA, Quantum Probability and Spectral Analysis of Graphs, Series: Theoretical and Mathematical Physics, Springer, Berlin Heidelberg, 2007. | |
dc.relation | K. R. PARTHASARATHY, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics 85, 1992. | |
dc.relation | U. RICHARD, Sur des in´egalit´es du type Wirtinger et leurs application aux ´equationes diff´erentielles ordinaires, Colloquium of Analysis held in Rio de Janeiro, (1972), 233–244. | |
dc.relation | W. RUDIN, Real and complex analysis, McGraw-Hill, 1987. | |
dc.relation | S. SALIMI,Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory, Quantum Information Processing, 9, 1 (2010), 75–91. | |
dc.relation | S. SALIMI, Quantum Central Limit Theorem for Continuous-Time Quantum Walks on Odd Graphs in Quantum Probability Theory, International Journal of Theoretical Physics, 47, 12, (2008), 3298–3309. | |
dc.relation | S. SALIMI, Study of continuous-time quantum walks on quotient graphs via quantum probability theory, International Journal of Quantum Information, 6, 4, (2008), 945–957. | |
dc.relation | K. TANAHASHI, A. UCHIYAMA, M. UCHIYAMA, On Schwarz type inequalities, Proc. Amer. Math. Soc., 131, 8, (2003) 2549–2552. | |
dc.relation | M. TAKESAKI, Theory of operator algebras I, Springer-Verlag New York Heidelberg, 1979. | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | http://files.ele-math.com/articles/jmi-13-38.pdf | |
dc.title | BUZANO’S INEQUALITY IN ALGEBRAIC PROBABILITY SPACES | |
dc.type | Artículo de revista | |