dc.creatorRendón-González, Ana María
dc.date.accessioned2021-06-08 14:39:06
dc.date.accessioned2022-09-08T13:42:32Z
dc.date.available2021-06-08 14:39:06
dc.date.available2022-09-08T13:42:32Z
dc.date.created2021-06-08 14:39:06
dc.date.created2022-09-08T13:42:32Z
dc.date.issued2021-06-08
dc.identifier10.18601/17941113.n19.03
dc.identifier2346-2140
dc.identifier1794-1113
dc.identifierhttps://bdigital.uexternado.edu.co/handle/001/7898
dc.identifierhttps://doi.org/10.18601/17941113.n19.03
dc.description.abstractDada la alta popularidad que han venido ganando los fondos de inversión colec­tiva (FIC) y su creciente participación en el mercado financiero, tanto en monto de inversiones como en número de inversionistas, es necesario contar con he­rramientas que permitan una adecuada y oportuna identificación de los riesgos, con el fin de prevenir una afectación a la estabilidad del sistema financiero. Sin embargo, la literatura en cuanto a alertas tempranas de estos fondos es escasa, ya que la mayoría de trabajos están enfocados en el sector bancario. El objetivo de este documento es desarrollar un indicador de alerta temprana que permita la identificación de vulnerabilidades de los FIC, con una ventana de tiempo suficiente a fin de que los hacedores de política implementen medidas para su contención. Para la consecución del objetivo planteado, se adaptará al escenario de los FIC en Colombia una medida de alerta temprana ampliamente conocida en el sector bancario, como es el caso del Indicador de Riesgo Sisté­mico Doméstico (d-SRI) del Banco Central Europeo. Los resultados obtenidos muestran que ante un choque de una desviación estándar en el indicador de alertas tempranas de los FIC (IATE FIC), se espera una caída de 1,4 puntos porcentuales en el crecimiento trimestral del valor neto de los FIC (VNF) en los seis meses posteriores a la ocurrencia del choque. Los ha­llazgos encontrados en el presente trabajo representan un avance importante en la detección de vulnerabilidades de los fondos de inversión y pueden ser de gran ayuda para los hacedores de política en la toma de decisiones ante escenarios de incertidumbre en el comportamiento futuro de la industria de FIC.
dc.description.abstractGiven the high popularity that collective investment funds (CIFs) have been gaining and their growing participation in the financial market, both in terms of the amount of investments and the number of investors, it is necessary to have tools that allow for adequate and timely identification of risks, in order to prevent an effect on the stability of the financial system. However, there is a lack of literature on early warnings for these funds, since most of the papers are focused on the banking sector. This document aims to develop an early warning indicator that allows the identification of CIF vulnerabilities, with enough time of anticipation for poli­cymakers to implement measures for their containment. In order to achieve this objective, a widely known early warning measure in the banking sector, such as the European Central Bank’s Domestic Systemic Risk Indicator (d-SRI), will be adapted to the CIF scenario in Colombia.  The results obtained show that in the event of a shock of one standard de­viation in the CIF early warning indicator (IATE FIC), a drop of 1.4 percentage points in the quarterly growth of the fund’s net value (FNV) is expected in the six months following the occurrence of the shock. The findings showed in this work represent an important advance in the detection of vulnerabilities of invest­ment funds and can be of great help to policymakers in making decisions under scenarios of uncertainty in the future behavior of the CIF industry.
dc.languagespa
dc.publisherFacultad de Finanzas, Gobierno y Relaciones Internacionales
dc.relationhttps://revistas.uexternado.edu.co/index.php/odeon/article/download/7231/10366
dc.relationhttps://revistas.uexternado.edu.co/index.php/odeon/article/download/7231/10367
dc.relationNúm. 19 , Año 2020 : Julio-Diciembre
dc.relation79
dc.relation19
dc.relation31
dc.relationOdeon
dc.relationAlessi, L. y Detken, C. (2011). Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity. European Journal of Political Economy, 27(3), 520-533. https://doi.org/10.1016/j.ejpoleco.2011.01.003
dc.relationBackus, D. K. y Kehoe, P. J. (1992). International evidence on the historical properties of business cycles. The American Economic Review, 82(4), 864-888. https://www. jstor.org/stable/2117348
dc.relationBussière, M. y Fratzscher, M. (2008). Low probability, high impact: Policy making and extreme events. Journal of Policy Modeling, 30(1), 111-121. https://doi.org/10.1016/j. jpolmod.2007.03.007
dc.relationConsultative Document (2nd) (2015). Assessment Methodologies for Identifying Non- Bank Non-Insurer Global Systemically Important Financial Institutions Proposed High-Level Framework and Specific Methodologies.
dc.relationDas, N., Kish, R. y Muething, D. (2005). Modeling Hedge Fund Returns. Financial Decisions, Article 4.
dc.relationDemirgüç-Kunt, A. y Detragiache, E. (2000). Monitoring banking sector fragility: A multivariate logit approach. World Bank Economic Review, 14(2), 287-307. https:// doi.org/10.1093/wber/14.2.287
dc.relationDivision of Investment Management Risk and Examinations Office Risk and Exami¬nations Office (2017). Private Funds Statistics.
dc.relationFederal Deposit Insurance Corporation (2016). 12 cfr Part 327 Assessments; Final Rule mstockstill on dsk3g9t082prod with rules3.
dc.relationFIAFIN (n.d.). Estadísticas por País-Tipo. http://www.fiafin.org/estadistica/showPaisTipo Fuertes, A. M. y Kalotychou, E. (2007). Optimal design of early warning systems for sovereign debt crises. International Journal of Forecasting, 23(1), 85-100. https:// doi.org/10.1016/j.ijforecast.2006.07.001
dc.relationGalindo Vergara, M., Serna, O., Garcés, L., Vicente González, J., Muñoz, J. y Peláez, N. (n.d.). Reportes Fogafin Sistema de primas ajustadas por riesgo. Fogafin.
dc.relationHentati, R., Kaffel, A. y Prigent, J.-L. (2010). Dynamic versus static optimization of hedge fund portfolios: The relevance of performance measures. International Jour¬nal of Business, 15(1), 1-17. http://www.craig.csufresno.edu/IJB/Recent Pub.htm
dc.relationInvestment Management Quality Ratings (n.d.). https://www.fitchratings.com/research/ es/fund-asset-managers/investment-management-quality-ratings-27-05-2020
dc.relationJin, X. y Simone, F. N. (2015). Investment funds? vulnerabilities: A tail-risk dynamic cimdo approach. In bcl working papers. https://ideas.repec.org/p/bcl/bclwop/ bclwp095.html
dc.relationJordà, Ò. (2005). Estimation and inference of impulse responses by local projections. Ame-rican Economic Review, 95(1), 161-182. https://doi.org/10.1257/0002828053828518
dc.relationKaiser, D. G., Schweizer, D. y Wu, L. (2012). Efficient hedge fund strategy alloca¬tions—Systematic framework for investors that incorporates higher moments. In Financial Markets, Institutions & Instruments, 21(5), 241-260. http://onlinelibrary. wiley.com/journal/10.1111/(issn)1468-0416/issues
dc.relationKoellner, T., Weber, O., Fenchel, M. y Scholz, R. (2005). Principles for sustainability rating of investment funds. Business Strategy and the Environment, 14(1), 54-70. https://doi.org/10.1002/bse.423
dc.relationLang, J. H., Izzo, C., Fahr, S. y Ruzicka, J. (2019). Occasional Paper Series Anticipating the bust: A new cyclical systemic risk indicator to assess the likelihood and severity of financial crises. Office of the European Union. https://doi.org/10.2866/468656
dc.relationLeyva Rayón, E. (2015). Modelo multifactor para analizar la exposición de los hedge funds a factores de riesgo macroeconómico. Economía Teoría y Práctica, 42, 9-44. https://doi.org/10.24275/etypuam/ne/422015/leyva
dc.relationMarkowitz, H. M. (1959). Portfolio selection: Efficient diversification of investments. Yale University Press. http://www.jstor.org/stable/j.ctt1bh4c8hj
dc.relationRamírez, S., Jiménez, J. S. y Witmer, J. (2015). Canadian Open-End Mutual Funds: An Assessment of Potential Vulnerabilities. Bank of Canada System Review, 47-56.
dc.relationSarlin, P. (2013). On policymakers’ loss functions and the evaluation of early war¬ning systems. Economics Letters, 119(1), 1-7. https://doi.org/10.1016/j.econ¬let.2012.12.030 Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1-48. https:// doi.org/10.2307/1912017
dc.relationSwets, J. A. (1996). Signal detection theory and ROC analysis in psychology and diag-nostics: Collected papers. Lawrence Erlbaum Associates. https://books.google. com.co/books?id=1vkmaqaamaaj
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.rightsAna María Rendón-González - 2021
dc.sourcehttps://revistas.uexternado.edu.co/index.php/odeon/article/view/7231
dc.subjectCollective investment funds;
dc.subjectearly warning indicators
dc.subjectfondos de inversión colectiva;
dc.subjectindicadores de alerta temprana
dc.titleIndicador de alerta temprana para la detección de vulnerabilidades de los fondos de inversión colectiva (FIC)
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución