dc.creatorAlvarado-Vesga, Daniela
dc.creatorGranja-Salcedo, Yury Tatiana
dc.date.accessioned2021-09-02 00:00:00
dc.date.accessioned2022-07-01T17:16:15Z
dc.date.accessioned2022-09-29T12:21:42Z
dc.date.available2021-09-02 00:00:00
dc.date.available2022-07-01T17:16:15Z
dc.date.available2022-09-29T12:21:42Z
dc.date.created2021-09-02 00:00:00
dc.date.created2022-07-01T17:16:15Z
dc.date.issued2021-09-02
dc.identifierhttps://repositorio.unisucre.edu.co/handle/001/1621
dc.identifier10.24188/recia.v13.n2.2021.770
dc.identifier2027-4297
dc.identifierhttps://doi.org/10.24188/recia.v13.n2.2021.770
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3749830
dc.languagespa
dc.publisherUniversidad de Sucre
dc.relationFaostat, población. FAO. 2020. http://www.fao.org/faostat/es/#compare
dc.relationCarvalho I, Fiorentini G, Castagnino P de S, Jesus R de, Messana J, Granja-Salcedo Y, et al. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim Feed Sci Technol. 2017; 227:142-153. https://doi.org/10.1016/j.anifeedsci.2017.02.017
dc.relationGranja-Salcedo Y. Glicerina bruta e lipídeos na dieta: manipulando o metabolismo ruminal de bovinos de corte. Inves Med Ved. 2016; 6. https://doi.org/10.26843/investigacao.v15i7.1476
dc.relationWanapat M, Mapato C, Pilajun R, Toburan W. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest Sci. 2011; 135(1):32-37. https://doi.org/10.1016/j.livsci.2010.06.006
dc.relationMaia M, Chaudhary L, Bestwick C, Richardson A, McKain N, Larson T, et al. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010; 10:52. https://doi.org/10.1186/1471-2180-10-52
dc.relationFiorentini G, Santana M, Sampaio A, Reis R, Ribeiro A, Berchielli T. Intake and performance of confined crossbred heifers fed different lipid sources. Rev Bras Zootec. 2012; 41(6):1490-1498. https://doi.org/10.1590/S1516-35982012000600025
dc.relationMedeiros R, Gomes R, Bungenstab D. Nutrição de bovinos de corte fundamentos e aplicações. 1ed. Brasília: Embrapa; 2015. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1010951/nutricao-de-bovinos-de-corte-fundamentos-e-aplicacoes
dc.relationGottschall C, Canellas L, Marques P, Bittencourt H. Relationships between age, weight, average weight gain and days on feed of beef steers slaughtered at 15 or 27 months of age. Ciênc Agrár. 2009; 30(3):717-726. http://dx.doi.org/10.5433/16790359.2009v30n3p717
dc.relationFernandes A, Sampaio A, Henrique W, Oliveira E, Tullio R, Perecin D. Características da carcaça e da carne de bovinos sob diferentes dietas, em confinamento. Arq Bras Med Veterinária. 2008; 60(1):139-147. https://doi.org/10.1590/S0102-09352008000100020
dc.relationChuntrakort P, Otsuka M, Hayashi K, Takenaka A, Udchachon S, Sommart K. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest Sci. 2014; 161:80-89. https://doi.org/10.1016/j.livsci.2014.01.003
dc.relationVahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, et al. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020; 165:108114. https://doi.org/10.1016/j.meatsci.2020.108114
dc.relationAndrade E, Polizel A, Roça R, Faria M, Resende F, Siqueira G, et al. Beef quality of young Angus × Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods. 2014; 98(4):591-598. https://doi.org/10.1016/j.meatsci.2014.05.028
dc.relationMcCann J, Elolimy A, Loor J. Rumen Microbiome, Probiotics, and Fermentation Additives. Vet Clin North Am Food Anim Pract. 2017; 33(3):539-553. https://doi.org/10.1016/j.cvfa.2017.06.009
dc.relationFernando S, Purvis H, Najar F, Sukharnikov L, Krehbiel C, Nagaraja T, et al. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Appl Environ Microbiol. 2010; 76(22):7482-7490. https://doi.org/10.1128/AEM.00388-10
dc.relationZeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microb Pathog. 2018; 124:106-115. https://doi.org/10.1016/j.micpath.2018.08.038
dc.relationChaucheyras-Durand F, Ossa F. The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof Anim Sci. 2014; 30(1):1-12. https://doi.org/10.15232/S1080-7446(15)30076-0
dc.relationChaucheyras-Durand F, Masséglia S, Fonty G, Forano E. Influence of the Composition of the Cellulolytic Flora on the Development of Hydrogenotrophic Microorganisms, Hydrogen Utilization, and Methane Production in the Rumens of Gnotobiotically Reared Lambs. Appl Environ Microbiol. 2010; 76(24):7931-7937. https://doi.org/10.1128/AEM.01784-10
dc.relationPatel V, Patel AK, Parmar NR, Patel AB, Reddy B, Joshi CG. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol. 2014; 98(23):9749-9761. https://doi.org/10.1007/s00253-014-6153-1
dc.relationKrehbiel CR. Applied nutrition of ruminants: Fermentation and digestive physiology. Prof Anim Sci. 2014; 30(2):129-139. https://doi.org/10.15232/S1080-7446(15)30100-5
dc.relationRibeiro G, Gruninger R, Badhan A, McAllister T. Mining the rumen for fibrolytic feed enzymes. Anim Front. 2016; 6(2):20-26. https://doi.org/10.2527/af.2016-0019
dc.relationEmerson E, Weimer P. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol. 2017; 101(10):4269-4278. https://doi.org/10.1007/s00253-017-8150-7
dc.relationMaia M, Chaudhary L, Figueres L, Wallace RJ. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007; 91(4):303-314. https://doi.org/10.1007/s10482-006-9118-2
dc.relationGranja-Salcedo Y, Dias A, Gomez-Insuasti A, Messana J, Berchielli T. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Anim Feed Sci Technol. 2017; 225:195-204. https://doi.org/10.1016/j.anifeedsci.2017.01.021
dc.relationJami E, Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows. Anaerobe. 2012; 18(3):338-343. https://doi.org/10.1016/j.anaerobe.2012.04.003
dc.relationBuccioni A, Decandia M, Minieri S, Molle G, Cabiddu A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Technol. 2012; 174(1-2):1-25. https://doi.org/10.1016/j.anifeedsci.2012.02.009
dc.relationLourenço M, Ramos-Morales E, Wallace RJ. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 2010; 4(7):1008-1023. https://doi.org/10.1017/S175173111000042X
dc.relationMaczulak AE. Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteriat. Appl Env Microbiol. 1981; 42(5):856-862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC244119/
dc.relationWadhwa M, Bakshi MPS, Makkar HPS. Modifying gut microbiomes in large ruminants: Opportunities in non-intensive husbandry systems. Anim Front. 2016; 6(2):27-36. https://doi.org/10.2527/af.2016-0020
dc.relationHarmon DL, Swanson KC. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal. 2020; 14(S1):s17-s28. https://doi.org/10.1017/S1751731119003136
dc.relationDiaz HL, Karnati SKR, Lyons MA, Dehority BA, Firkins JL. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. J Dairy Sci. 2014; 97(4):2231-2243. https://doi.org/10.3168/jds.2013-7428
dc.relationRey M, Enjalbert F, Combes S, Cauquil L, Bouchez O, Monteils V. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J Appl Microbiol. 2014; 116(2):245-257. https://doi.org/10.1111/jam.12405
dc.relationBeauchemin KA. Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci. 2018; 101(6):4762-4784. https://doi.org/10.3168/jds.2017-13706
dc.relationWang GR, Duan YL. Studies on Lignocellulose Degradation by Rumen Microorganism. Adv Mater Res. 2013; 853:253-259. https://doi.org/10.4028/www.scientific.net/AMR.853.253
dc.relationFarenzena R, Kozloski GV, Mezzomo MP, Fluck AC. Forage degradability, rumen bacterial adherence and fibrolytic enzyme activity in vitro: effect of pH or glucose concentration. J Agric Sci. 2014; 152(2):325-332. https://doi.org/10.1017/S0021859613000427
dc.relationRaut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. Desvaux M, editor. PLOS ONE. 2015; 10(10):e0141197. https://doi.org/10.1371/journal.pone.0141197
dc.relationPatra AK, Yu Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl Environ Microbiol. 2012; 78(12):4271-4280. https://doi.org/10.1128/AEM.00309-12
dc.relationAbubakr A, Alimon A, Yaakub H, Abdullah N, Ivan M. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. J Saudi Soc Agric Sci. 2013; 12(2):147-154. https://doi.org/10.1016/j.jssas.2012.11.002
dc.relationPeng Q, Khan NA, Wang Z, Yu P. Relationship of feeds protein structural makeup in common Prairie feeds with protein solubility, in situ ruminal degradation and intestinal digestibility. Anim Feed Sci Technol. 2014; 194:58-70. https://doi.org/10.1016/j.anifeedsci.2014.05.004
dc.relationWang ZB, Xin HS, Bao J, Duan CY, Chen Y, Qu YL. Effects of hainanmycin or monensin supplementation on ruminal protein metabolism and populations of proteolytic bacteria in Holstein heifers. Anim Feed Sci Technol. 2015; 201:99-103. https://doi.org/10.1016/j.anifeedsci.2015.01.001
dc.relationBelanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups1. J Anim Sci. 2012; 90(12):4495-4504. https://doi.org/10.2527/jas.2012-5118
dc.relationDe Beni Arrigoni M, Ludovico C, Factori MA. Lipid Metabolism in the Rumen. En: Nagaraja T. Rumenology. Springer International Publishing; 2016.
dc.relationLiu K, Li Y, Luo G, Xin H, Zhang Y, Li G. The relationships of dairy ruminal odd- and branched- chain fatty acids to the duodenal bacterial nitrogen flow and volatile fatty acids. Livest Sci. 2020; 233:103971. https://doi.org/10.1016/j.livsci.2020.103971
dc.relationLu Z, Stumpff F, Deiner C, Rosendahl J, Braun H, Abdoun K, et al. Modulation of sheep ruminal urea transport by ammonia and pH. Am J Physiol-Regul Integr Comp Physiol. 2014; 307(5):R558-R570. https://doi.org/10.1152/ajpregu.00107.2014
dc.relationSouza NKP, Detmann E, Valadares Filho SC, Costa VAC, Pina DS, Gomes DI, et al. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arq Bras Med Vet Zootec. 2013; 65(6):1752-1758. https://doi.org/10.1590/S0102-09352013000600024
dc.relationSilva LFP, Dixon RM, Costa DFA. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim Prod Sci. 2019; 59(11):2093-2107. https://doi.org/10.1071/AN19234
dc.relationLi C, Beauchemin KA, Yang W. Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J Dairy Sci. 2020; 103(5):4340-4354. https://doi.org/10.3168/jds.2019-17606
dc.relationPrates LL, Valadares RFD, Filho SCV, Detmann E, Ouellet DR, Batista ED, et al. Investigating the effects of sex of growing Nellore cattle and crude protein intake on the utilization of recycled N for microbial protein synthesis in the rumen by using intravenous 15 N 15 N-urea infusion. Anim Feed Sci Technol. 2017; 231:119-130. https://doi.org/10.1016/j.anifeedsci.2017.06.014
dc.relationArcuri P, Ferraz F, Costa J. Microbiologia do rumen. En: Berchielli T, Pires A, Oliveira S. Nutriçao de ruminantes. 2.a ed. Jaboticabal: Funep; 2011.
dc.relationNam IS, Garnsworthy PC. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J Appl Microbiol. 2007; 103(3):551-556. https://doi.org/10.1111/j.1365-2672.2007.03317.x
dc.relationKarnati SKR, Sylvester JT, Ribeiro CVDM, Gilligan LE, Firkins JL. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J Dairy Sci. 2009; 92(8):3849-3860. https://doi.org/10.3168/jds.2008-1436
dc.relationOr-Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids1. J Anim Sci. 2007; 85(5):1228-1234. https://doi.org/10.2527/jas.2006-385
dc.relationDuckett SK, Gillis MH. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J Anim Sci. 2010; 88(8):2684-2691. https://doi.org/10.2527/jas.2009-2375
dc.relationPark B-K, Lee S-M, Kim H-C, Chang S-S, Kim T-I, Cho Y-M, et al. Effects of Ruminally Protected Amino Acid-enriched Fatty Acids on Growth Performance and Carcass Characteristics of Fattening Hanwoo Cows. J Anim Sci Technol. 2010; 52(6):499-504. https://doi.org/10.5187/JAST.2010.52.6.499
dc.relationBehan, Loh, Fakurazi, Kaka, Kaka, Samsudin. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals. 2019; 9(7):400. https://doi.org/10.3390/ani9070400
dc.relationSyahniar TM, Ridla M, Samsudin AA, Jayanegara A. Glycerol as an Energy Source for Ruminants: A Meta-Analysis of in Vitro Experiments. Media Peternak. 2016; 39(3):189-194. https://doi.org/10.5398/medpet.2016.39.3.189
dc.relationGranja-Salcedo YT, Duarte Messana J, Carneiro de Souza V, Lino Dias AV, Takeshi Kishi L, Rocha Rebelo L, et al. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. Br J Nutr. 2017; 118(9):651-660. https://doi.org/10.1017/S0007114517002689
dc.relationVito ES, Granja-Salcedo YT, Lage JF, Oliveira AS, Gionbelli MP, Messana JD, et al. Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina Ciênc Agrár. 2018; 39(5):2215-2232. http://dx.doi.org/10.5433/1679-0359.2018v39n5p2215
dc.relationhttps://revistas.unisucre.edu.co/index.php/recia/article/download/e770/959
dc.relationNúm. 2 , Año 2021 : RECIA 13(2):JULIO-DICIEMBRE 2021
dc.relatione770
dc.relation2
dc.relatione770
dc.relation13
dc.relationRevista Colombiana de Ciencia Animal - RECIA
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rights@Autores - 2021
dc.sourcehttps://revistas.unisucre.edu.co/index.php/recia/article/view/e770
dc.subjectfatty acids
dc.subjectbacteria
dc.subjectbiohydrogenation
dc.subjectfermentation
dc.subjectprotozoa
dc.subjectácidos grasos
dc.subjectbacteria
dc.subjectbiohidrogenación
dc.subjectfermentación
dc.subjectprotozoos
dc.titleSuplementación lipídica para la producción de carne bovina en confinamientos
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución