dc.creatorPEREZ C., ALEXANDER
dc.creatorCHAMORRO A., LEONARDO
dc.date.accessioned2013-07-12 00:00:00
dc.date.accessioned2022-07-01T17:15:36Z
dc.date.accessioned2022-09-29T12:20:51Z
dc.date.available2013-07-12 00:00:00
dc.date.available2022-07-01T17:15:36Z
dc.date.available2022-09-29T12:20:51Z
dc.date.created2013-07-12 00:00:00
dc.date.created2022-07-01T17:15:36Z
dc.date.issued2013-07-12
dc.identifierhttps://repositorio.unisucre.edu.co/handle/001/1450
dc.identifier10.24188/recia.v5.n2.2013.457
dc.identifier2027-4297
dc.identifierhttps://doi.org/10.24188/recia.v5.n2.2013.457
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3749478
dc.languagespa
dc.publisherUniversidad de Sucre
dc.relationAHEMAD, M. 2012. Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3:39–46.
dc.relationALIYE, N.; FININSA, C.; HISKIAS Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control 47:282-288.
dc.relationARAÚJO, W.L.; MARCON, J.; MACCHERONI, J.R.W.; VAN, E.; VAN, V.; AZEVEDO, J.L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 68: 4906–4914.
dc.relationARGUELLES-ARIAS, A.; ONGENA, M.; HALIMI, B.; LARA, Y.; BRANS, A.; JORIS, B.; FICKERS, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories 26: 8–63.
dc.relationARREBOLA, E.; JACOBS, R.; KORSTEN, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology 108 (2): 386– 395.
dc.relationBAILEY, B.A.; BAE, H.; STREM, M.D.; ANTUNEZ, G.; GUILTINAN, M.J.; VERICA, J.A.; MAXIMOVA, S.N.; BOWERS, J.H. 2005. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiol. Biochem. 43: 611–622.
dc.relationBAZZICALUPO, M.; OKON, Y. 2002. Associative and endophytic symbiosis. Current Plant Science and Biotechnology in Agriculture, Nitrogen Fixation: From Molecules to Crop Productivity. Section VIII. 38:409-410.
dc.relationBARKA, E.A.; GOGNIES, S.; NOWAK, J.; AUDRAN, J.C.; BELARBI, A. 2002. Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control 24: 135–142.
dc.relationBARZANTI, R.; OZINO, F.; BAZZICALUPO, M.; GABBRIELLI, R.; GALARDI, F.; GONNELLI, C.; MENGONI, A. 2007. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbiology of Ecology 53: 306-316.
dc.relationBENHAMOU, N.; GAGNÉ, S.; QUÉRÉ, DL.; DEHBI, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem. Cell Biol 90: 45-56.
dc.relationBORGES, W.D.S.; BORGES, K.B.; BONATO, P.S.; SAID, S.; PUPO, M.T. (2009). Endophytic fungi: Natural products, enzymes and biotransformation reactions. Current Organic Chemistry 13(12):1137–1163.
dc.relationCHANWAY, C.P. 1998. Bacterial endophytes: ecological and practical implications. Sydowia 50, 149–170.
dc.relationCASTILLO, U.F.; STROBEL, G.A.; FORD, E.J.; HESS, W.M.; PORTER, H.; JENSEN, J.B.; et al.,. 2002. Munumbicins, wide spectrum antibiotics produced by Streptomyces (NRRL30562) endophytic on Kennedia nigriscans. Microbiology 148: 2675–2685.
dc.relationCHAISIT, P.; MICHAEL, J.S.; PRATHUANGWONG, S. 2010. Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart Journal (Nature Science) 44 (1): 84–99.
dc.relationCHEN, X.H.; KOUMOUTSI, A.; SCHOLZ, R.; BORRISS, R. 2009. More than anticipated production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology 16:14–24.
dc.relationCOMPANT, S.; CLÉMENT, C.; SESSITSCH, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology Biochemical 42:669–78.
dc.relationCOMPANT, S.; REITER, B.; SESSITSCH, A.; NOWAK, J.; CLÉMENT, C.; AIT BARKA, E. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Applied Environmental Microbiology 71:1685–1693.
dc.relationDARY, M.; CHAMBER-PÉREZ MA.; PALOMARES, AJ.; PAJUELO, E. 2010. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–30.
dc.relationDEMAIN AL, SANCHEZ S. 2009. Microbial drug discovery: 80 years of progress. J Antibiot 62:5-16.
dc.relationELBELTAGY, A.; NISHIOKA, K.; SATO, T.; SUZUKI, H.; YE, B.; HAMADA, T.; ISAWA, T.; MITSUI, H.; MINAMISAWA, K. 2001. Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol. 67: 5285- 5293.
dc.relationFRANCOVA, K.; MACKOVÁ, M.; MACEK, T.; SYLVESTRE, M.. 2004. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants. Environ. Poll. 127: 41-48.
dc.relationFISHAL, EM.; MEON, S.; YUN, WM. 2010. Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible Berangan Banana preinoculem with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agricul . Sci. China 9:1140-1149.
dc.relationGERHARDSON, B.; WRIGHT, S. 2002. Bacterial associations with plants: Beneficial, non N-fixing interactions. Microorganisms in Plant Conseration and Biodiversity. Kluwer Academic Publishers 79-103.
dc.relationGRANDLIC, CJ.; MENDEZ, MO.; CHOROVER, J.; MACHADO, B.; MAIER, RM. 2008. Plant growth-promoting bacteria for phytostabilization of mine tailings. Int J Environ Sci Technol 42: 2079–84.
dc.relationGUNTER, B.; STEPHANE, C.; BIRGIT, M.; FRIEDERIKE, T.; ANGELA, SESSITSCH. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology 27: 30–37.
dc.relationHASSAN, M.N.; OSBORN, M.; HAFEEZ, F.Y., 2010. Molecular and biochemical characterization of surfactin producing Bacillus species antagonistic to Colletotrichum falcatum Went causing sugarcane red rot. African Journal of Microbiology Research 4 (20): 2137–2142.
dc.relationHERNÁNDEZ, A.; RIVES, N.; HEYDRICH, YM. 2004. Caracterización de la comunidad microbiana y endófita asociada al cultivo del arroz variedad J- 104. En: Congreso Científico del INCA (14:2004, nov 9-12, La Habana). Memorias [CD-ROM]. Instituto Nacional de Ciencias Agrícolas.
dc.relationHUANG, ZJ.; CAI, XL.; SHAO, CL:, SHE, ZG.; XIA, XK.; CHEN, YG. 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp ZSU-H76.Phytochemistry 69: 1604–8.
dc.relationHUA WEI Z, YOUG CHS, REN XT. 2006. Biology and chemistry of endophytes. Nat Prod Rep. 23:753-771.
dc.relationHU, H.Q.; LI, X.S.; HE, H. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54 (3): 359–365.
dc.relationIDRIS, R.; TRIFONOVA, R.; PUSCHENREITER, M.; WENZEL, W.W.; SESSITSCH, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70: 2667–2677.
dc.relationJOURDAN, E.; HENRY, G.; DUBY, F.; DOMMES, J.; BARTHÉLEMY, P.; THONART, P.; ONGENA, M. 2009. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant–Microbe Interactions 22 (4): 456–468.
dc.relationKAPULNIK, Y. 2002. Plant growth promoting by rhyzosphera bacteria. Plant roots the hidden half. Ed Marcel Dekker. Nueva York. Estados Unidos de América. 869-887P. KIDD, P.; BARCELO, J.; BERNAL, MP.; NAVARI-IZZO, F.; POSCHENRIEDER, C.; SHILEV S. 2009. Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–59.
dc.relationKLOEPPER, J.1983. Effect of seed piece inoculation with plant growth promoting rhizobacteria on population of Erwinia carotovora on potato roots and in daughter tubers. Phitopathology. 73: 217-219.
dc.relationKNIEF, C.; DELMOTTE, N.; CHAFFRON, S.; STARK, M.; INNEREBNER, G.; WASSMANN, R.; MERING, C.; VORHOLT, JA. 2011. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J.: doi:10.1038/ismej.2011.192
dc.relationKUFFNER, M.; PUSCHENREITER, M.; WIESHAMMER, G.; GORFER, M.; SESSITSCH A. 2008. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44
dc.relationKUIPER, I.; LAGENDIJK, E.L.; BLOEMBERG, G.V.; LUGTENBERG, B.J.J.; 2004. Rhizoremediation: A beneficial plant-microbe interaction. Mol. Plant- Microbe Interact. 17: 6–15.
dc.relationLEBEAU, T.; BRAUD, A.; JÉZÉQUEL, K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522.
dc.relationLIMSUWAN, S.; TRIP, EN.; KOUWENC, T.; PIERSMAC, S.; HIRANRAT, A.; MAHABUSARAKAM, W.; ETAL, R. 2009. A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 16:645–51.
dc.relationLODEWYCKX, C.; VANGRONSVELD, J.; PORTEOUS, F.; MOORE, E.R.B.; TAGHAVI, S.; MEZGEAY, M.; VAN DER LELIE, D. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21: 583–606.
dc.relationLUO, S.L.; WAN, Y.; XIAO, X.; GUO, H.J.; CHEN, L.; XI, Q.; ZENG, G.M.; LIU, C.B.; CHEN, J.L. 2010. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl. Microbiol. Biotechnol 89:1637–1644.
dc.relationMA, Y.; RAJKUMAR M.; FREITAS, H. 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–7. MA, Y.; RAJKUMAR, M.; FREITAS, H. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. J Hazard Mater 2009;166:1154–61.
dc.relationMA, Y; RAJKUMAR M.; FREITAS H. 2009. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 2009;75:719–25.
dc.relationMA, Y.; PRASAD, M.; RAJKUMAR, M.; FREITAS, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 29: 248–258.
dc.relationMA, Y.; PRASAD, MNV.; RAJKUMAR, M.; FREITAS, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–58.
dc.relationMACÍAS-RUBALCAVA, M.; HERNÁNDEZ-BAUTISTA, B.; OROPEZA, F.; DUARTE, G.; GONZÁLEZ, M.; GLENN, A.; et al. 2010. Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis; a tropical endophytic fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10): 1122–1131.
dc.relationMADHAIYAN, M.; POONGUZHALI, S.; SA, T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–8.
dc.relationMAKSIMOV, I.V.; ABIZGILDINA, R.R.; PUSENKOVA, L.I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Applied Biochemistry and Microbiology 47 (4): 333–345.
dc.relationMELO, F.M.P.; FIORE, M.F.; MORAES, L.A.B.; STENICO, M.E.S.; SCRAMIN, S.; TEIXEIRA, M.A.; MELO, I.S. 2009. Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4a. Scientia Agricola 66:593–592.
dc.relationMENGONI, A.; PINI, F.; HUANG, L.N.; SHU, W.S.; BAZZICALUPO, M. 2009. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv. Microbiol. Ecol. 58:660–667.
dc.relationMIAO V, DAVIES J: Actinobacteria. 2010. The good, the bad, and the ugly. Anton Leeuwenhoek 98:143-150. MOORE F. P.; BARAC T.; BORREMANS B.; OEYEN L.; VANGRONSVELD J.; VAN DER LELIE D.; CAMPBEL C. D., MOORE E. R.B. 2006. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterization of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology 29:539–556.
dc.relationMORATH, S.U.; HUNG, R.; BENNETT, J.W. 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2–3): 73–83.
dc.relationONGENA, M.; JACQUES, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16 (3): 115–125.
dc.relationONGENA, M.; JOURDAN, E.; ADAM A.; PAQUOT, M.; BRANS, A.; JORIS, B.; ARPIGNY, J.L.; THONART, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
dc.relationPEREZ-GARCIA, A.; ROMERO, D.; DE VICENTE, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22 (2):187–193.
dc.relationPUENTE, M.E.; LI, C.Y.; BASHAN, Y. 2009. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66: 402– 408.
dc.relationRADWAN, T.; MOHAMED, Z.K.; REIS, V.M. 004. Efeito da inoculacao de Azospirillum e Herbaspirillum na producao de compostos indolicos em plantulas de milho e arroz. Pesq. Agropec. Bras. Brasilia 39(10): 987-994.
dc.relationRAMESHA, B.T.; SUMA, H.K.; SENTHILKUMAR, U.; PRITI, V.; RAVIKANTH, G.; VASUDEVA, R.; et al., 2013. New plantsources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa,India. Phytomedicine 20:521–527.
dc.relationRAJKUMAR, M.; AE, N.; PRASAD, MNV.; FREITAS, H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142-149. REITER, B.; SESSITSCH, A. 2006. Bacterial endophytes of the wildflower Crocus albi-florus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 52:140–149.
dc.relationREN, J.H.; LI, H.; WANG, Y.F.; YE, J.R.; YAN, A.Q.; WU, X.Q. 2013. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against Poplar Canker, Biological Control (2013), doi: http://dx.doi.org/ 10.1016/j.biocontrol.2013.09.012
dc.relationRENTZ, J.A.; ÁLVAREZ, P. J.J.; J. SCHNOOR, L. 2004. Repression of Pseudomonas putida phenantrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 6: 574-583.
dc.relationRIVERA-CRUZ, M.; FERRERA-CERRATO, C.R.; VOLKE-HALLER, V.; RODRÍGUEZ-VÁZQUEZ, R.; FERNÁNDEZ-LINARES, L. 2002. Adaptación y selección de microorganismos autóctonos en medios de cultivo enriquecidos con petróleo crudo. Terra 20:423-434.
dc.relationSANG, HY.; MAYANK A.; SE-CHUL CH. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research 169: 83– 98.
dc.relationSHARMA, PK.; SARITA S.; PRELL, J. 2005. Isolation and characterization of an endophytic bacterium related to Rhizobium/Agrobacterium from wheat (Triticum aestivum L.) roots. Current Science 89(4):608-610.
dc.relationSARI, E.; ETEBARIAN, H.R.; AMINIAN, H. 2007. The Effects of Bacillus pumilus, Isolated from Wheat Rhizosphere, on Resistance in Wheat Seedling Roots against the Take-all Fungus, Gaeumannomyces graminis var. tritici. J. Phytopathology 155: 720–727.
dc.relationSEGURA, A.; RAMOS, J.L. 2013. Plant–bacteria interactions in the removal of pollutants. Current Opinion in Biotechnology , 24:467–473.
dc.relationSESSITSCH, A.; COENYE, T.; STURZ, A.V.; VANDAMME, P.; AIT B.E.; WANG-PRUSKI, G.; FAURE, D.; REITER, B.; GLICK, B.R.; NOWAK, J. 2005. Burkholderia phytofirmins sp. Nov., a novel plant-associated bacterium with plant beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187–1192.
dc.relationSESSITSCH, A.; KUFFNER, M.; KIDD, P.; VANGRONSVELD, J.; WENZEL, W.; FALLMANN, K.; PUSCHENREITER, M. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology & Biochemistry 60: 182 - 194.
dc.relationSHARMA, R.R.; SINGH, D.; SINGH, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control 50 (3): 205–221.
dc.relationSHAW, L. J.; BURNS, R. G. 2003. Biodegradation of organic pollutants in the rhizosphere. Adv. Appl. Microbiol. 53: 1-60.
dc.relationSHWETA, S.; GURUMURTHY, B.R.; RAVIKANTH, G.; RAMANAN, U.S.; SHIVANNA, M.B. 2013. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid,camptothecine. Phytomedicine 20: 337–342.
dc.relationSTEIN, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology 56:845–857.
dc.relationSTONE, JK.; BSCON, CW.; WHITE, JR. 2000. An overview of endophytic microbes: endophytism defined [J]. In: Becon CW, White Jr JF, editors. Microbial Endophytes. New York: Marcel Dekker; p.3–29.
dc.relationSTROBEL, G.; DAISY, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67(4):491– 502.
dc.relationSUN, Y.; CHENG, Z.; GLICK, B.R. 2009. The presence of a 1- aminocyclopropane-1- carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PSJN. FEMS Microbiol. Lett. 296: 131–136.
dc.relationTAECHOWISAN, T.; LU, C.H.; SHEN, Y.M.; LUMYONG, S. 2007. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. Journalof Cancer and Research Treatment 3:86–91
dc.relationTHAKURIA, D.; TALUKDAR, N. C.; GOSWAMI, C.; HAZARIKA, S.; BORO, R. C. Y KHAN, M. R. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science 86(7): 978- 985
dc.relationTOP, E.M.; SPRINGAEL, Y D. 2003. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Op. Biotechnol. 14: 262-269. TSAVKELOVA, EA.; CHERDYNTSEVA, TA.; BOTINA, SG.; NETRUSOV, AL. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res.162(1):69-76.
dc.relationVAN A. 2004. Biodegradation of Nitro-Substituted Explosives 2,4,6- Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, and Octahydro-1,3,5,7- Tetranitro-1,3,5-Tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides!nigra DN34). Applied Environmental Microbiology. 70: 508–517.
dc.relationVAN DER LELIE D., BARAC T., TAGHAVI S., VANGRONSVELD J. 2005. Response to Newman. New uses of endophytic bacteria to improve phytoremediation. TRENDS in Biotechnology 23(1): 8-12.
dc.relationVERMA, S.C.; LADHA, J.K.; TRIPATHI, A.K. 2001. Evaluation of plant growth promot-ing and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91:127–141.
dc.relationWAKELIN, S.; et al., 2004. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fert. Soils 40:36–43. WANG, Y.; DAI, C. C. 2011. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Annals of Microbiology, 61(2): 207–215.
dc.relationWELBAUM, GE.; STURZ, AV.; DONG, Z.; NOWAK, J.2004. Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–93.
dc.relationWEYENS, N.; VAN DER LELIE, D.; TAGHAVI, S.; VANGRONSVELD, J. 2009. Phytoremediation: plant-endophyte partnerships take the challege. Curr. Opin. Biotechnol. 20: 1–7.
dc.relationWEYENS, N.; VAN, DER LELIE.; D., TAGHAVI, S.; VANGRONSVELD, J. 2009. Phytoremediation: plant-endophytec partnerships take the challenge. Current Opinion in Biotechnology 20: 248 - 254. ZHANG, YF.; HE, LY.; CHEN, ZJ.; ZHANG, WH.; WANG, QY.; QIAN, M. et al. 2011. Characterization of lead- 1271 resistant and ACC deaminase-producing endophytic bacteria and their potential in 1272 promoting lead accumulation of rape. J Hazard Mater 186:720–5.
dc.relationZHI-LIN, Y.; YI-CUN, C.; BAI-GE, X.; CHU-LONG, Z. 2012. Current perspectives on the volatile-producing fungal endophytes. Critical Reviews in Biotechnology, 32(4):363–373.
dc.relationhttps://revistas.unisucre.edu.co/index.php/recia/article/download/457/503
dc.relationNúm. 2 , Año 2013 : RECIA 5(2):JULIO-DICIEMBRE
dc.relation462
dc.relation2
dc.relation439
dc.relation5
dc.relationRevista Colombiana de Ciencia Animal - RECIA
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistas.unisucre.edu.co/index.php/recia/article/view/457
dc.subjectEndophytic
dc.subjectbiological control
dc.subjectpromoters of growth.
dc.subjectEndófitas
dc.subjectcontrol biológico
dc.subjectpromotoras de crecimiento. Abstract The
dc.titleBacterias endofitas: un nuevo campo de investigación para el desarrollo del sector agropecuario
dc.typeArtículo de revista
dc.typeJournal article


Este ítem pertenece a la siguiente institución