dc.creator | Campal-Espinosa, Ana Cristina | |
dc.creator | Junco-Barranco, Jesús Arturo | |
dc.creator | Fuentes-Aguilar, Franklin | |
dc.creator | Calzada-Aguilera, Lesvia | |
dc.creator | Bover Campal, Ana Claudia | |
dc.date.accessioned | 2020-07-01 00:00:00 | |
dc.date.accessioned | 2022-07-01T17:16:14Z | |
dc.date.accessioned | 2022-09-29T12:20:46Z | |
dc.date.available | 2020-07-01 00:00:00 | |
dc.date.available | 2022-07-01T17:16:14Z | |
dc.date.available | 2022-09-29T12:20:46Z | |
dc.date.created | 2020-07-01 00:00:00 | |
dc.date.created | 2022-07-01T17:16:14Z | |
dc.date.issued | 2020-07-01 | |
dc.identifier | https://repositorio.unisucre.edu.co/handle/001/1615 | |
dc.identifier | 10.24188/recia.v12.n2.2020.760 | |
dc.identifier | 2027-4297 | |
dc.identifier | https://doi.org/10.24188/recia.v12.n2.2020.760 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3749438 | |
dc.language | eng | |
dc.publisher | Universidad de Sucre | |
dc.relation | Needham T, Lambrechts H, Hoffman LC. Castration of male livestock and the potential of immunocastration to improve animal welfare and production traits: Invited Review. S Afr J Anim Sci. 2017; 47(6):731-742. https://dx.doi.org/10.4314/sajas.v47i6.1 | |
dc.relation | Rault JL, Lay DC Jr., Marchant-Forde JN. Castration induced pain in pigs and other livestock. Appl Anim Behav Sci. 2011; 135:214-225. https://dx.doi.org/10.1016/j.applanim.2011.10.017 | |
dc.relation | Mallory DA, Nash JM, Ellersieck MR, Smith MF, Patterson DJ. Comparison of long-term progestin-based protocols to synchronize estrus before fixed-time artificial insemination in beef heifers. Anim. Sci. 2011; 89:1358–1365. https://dx.doi.org/10.2527/jas.2010-3694 | |
dc.relation | Báez G, Grajales H. Anestro post parto en ganado bovino en el trópico. Rev MVZ Cordoba. 2009; 14(3):1867-1875 https://doi.org/10.21897/rmvz.347 | |
dc.relation | ACC&D. Contraception and fertility control in dogs and cats: A report of the alliance for contraception in dogs and cats. 5. Marketing overview and issues. Alliance for Contraception in Cats & Dogs - ACC&D. 2013. https://www.acc-d.org/docs/default-source/Resource-Library-Docs/accd-e-book.pdf?sfvrsn=0 | |
dc.relation | Candek–Potokar M, Skrlep M, Batorek Lukac N. Raising entire males or immunocastrates – outlook on meat quality. Procedia Food Sci. 2015; 5:30–33. https://doi.org/10.1016/j.profoo.2015.09.008 | |
dc.relation | European Commission. European declaration on alternatives to surgical castration of pigs. [Internet]. 2018. [access January 2019]. URL available at: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_declaration_en.pdf | |
dc.relation | PIGCAS. Report on recommendations for research and policy support. Deliverable D4.1 of the EU project PIGCAS: attitude, practices and state of the art regarding piglet castration in Europe. [Internet]. Institut National De La Recherche Agronomique: Francia; 2009. URL available at: https://cordis.europa.eu/project/id/43969/de | |
dc.relation | Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology. 2017; 97:89–97. https://doi.org/10.1016/j.theriogenology.2017.04.038 | |
dc.relation | Aluwé M, Vanhonacker F, Millet S, Tuyttens AM. Influence of hands-on experience on pig farmers’ attitude towards alternatives for surgical castration of male piglets. Res Vet Sci. 2015; 103:80-86. https://doi.org/10.1016/j.rvsc.2015.09.019 | |
dc.relation | De Roest K, Montanari C, Fowler T, Baltussen, W. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia. Animal. 2009; 3(11):1522-1531. https://doi.org/10.1017/S1751731109990516 | |
dc.relation | Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007; 20(3):489–510. https://doi.org/10.1128/CMR.00005-07 | |
dc.relation | Gupta SK, Shrestha A, Minhas V. Milestones in contraceptive vaccines development and hurdles in their application. Hum Vaccin Immunother. 2014; 10(4):911-925. https://doi.org/10.4161/hv.27202 | |
dc.relation | Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012; 349:665-678. https://doi.org/10.1007/s00441-011-1319-y | |
dc.relation | Bechert US, Fraker MA. Twenty Years of SpayVac® Research: Potential Implications for Regulating Feral Horse and Burro Populations in the United States. HUM-WILDL INTERACT. 2018; 12(1):Article13. https://doi.org/10.26077/q4yh-6m43 | |
dc.relation | Roelle JE, Germanie SS, Kene AJ, Cade BS. Efficacy of SpayVac as a Contraceptive in Feral Horses. Wildl Soc Bull. 2017; 41(1):107–115. https://doi.org/10.1002/wsb.729 | |
dc.relation | Rutberg AT, Naugle RE, Turner JW, Fraker MA, Flanagan DR. Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus). Wildl Res. 2013; 40(4):281-288. https://doi.org/10.1071/WR12117 | |
dc.relation | Rutberg AK, Grams JW, Turner Jr, Hopkins H. Contraceptive efficacy of priming and boosting doses of controlled-release PZP in wild horses. Wildl Res. 2017; 44(2):174–181. https://doi.org/10.1071/WR16123 | |
dc.relation | Joonè CJ, Schulman ML and Bertschinger HJ. Ovarian dysfunction associated with zona pellucida-based immunocontraceptive vaccines. Theriogenology. 2017; 89:329-337. https://doi.org/10.1016/j.theriogenology.2016.09.018 | |
dc.relation | Mohammad I, Khilwani B, Ansari AS, Lohiya NK. Contraceptive vaccines: Implications in male and female fertility regulation. In: SK Gupta, NK Lohiya (ed). Molecular Medicine: Bench to bedside and beyond. First Edition. Indian Society for Study of Reproduction and Fertility; 2018. | |
dc.relation | Hampton JO, Hyndman TH, Barnes A, Collins T. Is Wildlife Fertility Control Always Humane? Animals. 2015; 5:1047-1071. https://doi.org/10.3390/ani5040398 | |
dc.relation | Goldberg E, Shelton JA. Immunologic properties of LDH-C4 for contraceptive vaccine development. In: Zatuchni GI, Goldsmith A, Sciarra JJ, Spieler J (eds). Male Contraception Advances and Future Prospects. Harper and Row: Philadelphia; 1986. | |
dc.relation | Primakoff P, Lathrop W, Woolman L, Cowan A, Myles D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature. 1988; 335:543-546. https://doi.org/10.1038/335543a0 | |
dc.relation | Naz RK, Alexander NJ, Isahakia M, Hamilton MD. Monoclonal antibody to a human sperm membrane glycoprotein that inhibits fertilization. Science. 1984; 225:342-344. https://doi.org/10.1126/science.6539947 | |
dc.relation | Cheema R, Vashishat N, Bansal A, Bakhri G, Gandotra V. Immuno-contraceptive potential of sperm specific LDHC4 and SPAM-1 (PH-20) sub units in dog. Open J Anim Sci. 2012; 2:265-280. https://doi.org/10.4236/ojas.2012.24037 | |
dc.relation | Cheema RS, Vashishat N, Bansal AK, Gandotra VK. Mutual interaction of dog sperm LDHC4, PH-20, actin and tubulin proteins and their immunocontraceptive potential in bitches. Indian J Anim Res. 2015; 49(4):461-469. https://doi.org/10.5958/0976-0555.2015.00040.0 | |
dc.relation | Tollner T, Overstreet J, Branciforte D, Primakoff P. Immunization of female cynomolgus macaques with a synthetic epitope of sperm‐specific lactate dehydrogenase results in high antibody titers but does not reduce fertility. Mol Reprod Dev. 2002; 62:257-264. https://doi.org/10.1002/mrd.10063 | |
dc.relation | Moudgal NR, Jeyakumar M, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Martín F. Development of male contraceptive vaccine— a perspective. Hum Reprod Update. 1997; 3(4):335–346. https://doi.org/10.1093/humupd/3.4.335 | |
dc.relation | Cohoreau C, Klett D, Combarnous Y. Structure – function relationships of glycoproteins hormones and their subunits´ ancestors. Front Endocrinol (Lausanne). 2015; 6:26. https://doi.org/10.3389/fendo.2015.00026 | |
dc.relation | Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997; 15:201–204. https://doi.org/10.1038/ng0297-201 | |
dc.relation | Yang L-H, Li J-T, Yan P, Liu H-L, Zeng S-Y, Wu Y-Z, et al. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod Fertil Dev. 2011; 23:544-550. https://doi.org/10.1071/RD10142 | |
dc.relation | Maggi R. Physiology of gonadotropin-releasing hormone (GNRH): beyond the control of reproductive functions. MOJ Anat Physiol. 2016; 2(5):150‒154. https://doi.org/10.15406/mojap.2016.02.00063 | |
dc.relation | Talwar P. Immunobiology of gonadotropin-releasing hormone. J Steroid Biochem Mol Biol. 1985; 23(5):795-800. https://doi.org/10.1016/s0022-4731(85)80016-9 | |
dc.relation | Ferro VA, Stimson WH. Effects of adjuvant, dose and carrier pre-sensitization on the immunization efficacy of a GnRH analogue. Drug Des Discov. 1996; 14(3):179-195. https://www.ncbi.nlm.nih.gov/pubmed/9017362 | |
dc.relation | Giri DK, Jayaraman S, Neelaram GS, Jayashankar R, Talwar GP. Prostatic hypoplasia in bonnet monkeys following immunization with semi synthetic anti-LHRH vaccine. Exp Mol Pathol. 1991; 54(3):255–264. https://doi.org/10.1016/0014-4800(91)90035-v | |
dc.relation | Hoskinson RM, Rigby RDG, Mattner PE, Huynh VL, D’Occhio M, Neish A, et al. Vaxstrate; An anti-reproductive vaccine for cattle. Aust J Biotechnol. 1990; 4(3):166-170. http://hdl.handle.net/102.100.100/255038?index=1 | |
dc.relation | Zamaratskaia G, Krøyer Rasmussen M. Immunocastration of male pigs – situation today. International 58th Meat Industry Conference “Meat Safety and Quality: Where it goes?” Procedia Food Sci. 2015; 5:324–327. https://doi.org/10.1016/j.profoo.2015.09.064 | |
dc.relation | Hernández-García FI, Duarte JL, Pérez MA, Raboso C, del Rosario AI, Izquierdo M. Successful long-term pre-pubertal immunocastration of pure bred Iberian gilts reared in extensive systems. Acta Agric. Slov. 2013; (Suppl 4):123–126. http://aas.bf.uni-lj.si/zootehnika/supl/4-2013/PDF/4-2013-123-126.pdf | |
dc.relation | Dalmau A, Velarde A, Rodríguez P, Pedernera C, Lionch P, Fäbrega E, et al. Use of anti-GnRF vaccine to suppress estrus in cross - bred Iberian female pigs. Theriogenology. 2015; 84:342-347. https://doi.org/10.1016/j.theriogenology.2015.03.025 | |
dc.relation | Amatayakul - Chantler S, Hoe F, Jackson JA, Roca RO, Stegner JE, King V,et al. Effects on performance and carcass and meat quality attributes following immunocastration with the gonadotropin releasing factor vaccine Bopriva or surgical castration of Bos indicus bulls raised on pasture in Brazil. Meat Sci. 2013; 95(1):78–94. https://doi.org/10.1016/j.meatsci.2013.04.008 | |
dc.relation | Amatayakul - Chantler S, Jackson JA, Stegner JE, King V, Rubio LMS, Howard R, et al. Immunocastration of Bos indicus × Brown Swiss bulls in feedlot with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality. J Anim Sci. 2012; 90:3718–3728. https://doi.org/10.2527/jas.2011-4826 | |
dc.relation | Miller, Lowell A.; Rhyan, Jack; and Killian, Gary, GonaCon TM, a Versatile GnRH Contraceptive for a Large Variety of Pest Animal Problems. USDA National Wildlife Research Center - Staff Publications. 2004. https://digitalcommons.unl.edu/icwdm_usdanwrc/371 | |
dc.relation | Ülker H, Yilmaz A, Karakuş F, Yörük, M, Budağ C, De Avila D, et al. LHRH Fusion Protein Immunization Alters Testicular Development, Ultrasonographic and Histological Appearance of Ram Testis. Reprod Domest Anim. 2009; 44:593-599. https://doi.org/10.1111/j.1439-0531.2007.01024.x | |
dc.relation | Kiyma Z, Adams TE, Hess BW, Riley ML, Murdoch WJ, Moss GE. Gonadal function, sexual behaviour, feedlot performance, and carcass traits of ram lambs actively immunized against GnRH. J Anim Sci. 2000; 78(9):2237-2243. https://doi.org/10.2527/2000.7892237x | |
dc.relation | Junco BJA, Reyes AO, Bover FEE, Fuentes AF, Pimentel VE, Basulto BR, et al. Pharmaceutical Composition Using Gonadotropin-Releasing Hormone (GNRH) Combined Variants as Immunogen. [Patent No. 9364524] International application published under the patent cooperation treaty (PCT). 2008. URL Available in: http://www.freepatentsonline.com/8999931.html | |
dc.relation | Fuentes F, Junco J, Calzada L, López Y, Pimentel E, Basulto Baker R, et al. Effect of a GnRH vaccine formulation on testosterone concentrations and reproduction in adult male rats. Biotecnol Apl. 2014; 31(3):222-227. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1027-28522014000300005&lng=es | |
dc.relation | Fuentes F, Junco JA, Bover E, Calzada L, López Y, Castro MD, Pimentel E, Basulto R, et al. Very Small Size Proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine. 2012; 30: 6595– 6599. https://doi.org/10.1016/j.vaccine.2012.08.020 | |
dc.relation | Aguilar FF, Barranco JJ, Aguilera LC, Fuentes EB, Serradelo Leal JA, López EH, et al. The influence of different peptide combinations to increase the immunogenicity of the Gonadotrophin Releasing Hormone Vaccine for prostate cancer treatment. J Exp Ther Oncol. 2017; 12(2):87-94. https://europepmc.org/article/med/29161775 | |
dc.relation | Rosenfield DA, Schilbach Pizzuto C. Wildlife population control – reproductive physiology under the influence of contraceptive methods in mammalian wildlife, with emphasis on immunocontraception: the best choice? A literature review. Braz J Vet Res Anim Sci. 2018; 55(1):1-16. https://doi.org/10.11606/issn.16784456.bjvras.2018.129431 | |
dc.relation | Ransom JI, Powers JG, Garbe HM, Oehler MW, Nett TM, Baker DL. Behavior of feral horses in response to culling and GnRH immunocontraception. Appl Anim Behav Sci. 2014; 157:81–92. https://doi.org/10.1016/j.applanim.2014.05.002 | |
dc.relation | Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013; 20(6):237-246. https://doi.org/10.3109/10717544.2013.819611 | |
dc.relation | Hajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017; 48(1):37. https://doi.org/10.1186/s13567-017-0442-5 | |
dc.relation | Varamini P, Rafiee A, Giddam AK, Mansfeld FM, Steyn F, Toth I. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. J Med Chem. 2017. 60(20):8309-8320. https://doi.org/10.1021/acs.jmedchem.6b01771 | |
dc.relation | Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016; 7:2492–2500. https://doi.org/10.1039/C5SC04392A | |
dc.relation | Siel D, Vidal S, Carvallo F, Sevilla R, Lapierre L, Paredes R, et al. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice bTh1/Th2 immune response. Theriogenology. 2016; 86:1589-1598. http://dx.doi.org/10.1016/j.theriogenology.2016.05.019 | |
dc.relation | Sharma S, McDonald I, Miller L, Hinds LA. Parenteral administration of GnRH constructs and adjuvants: Immune responses and effects on reproductive tissues of male mice. Vaccine. 2014; 32:5555–5563. http://dx.doi.org/10.1016/j.vaccine.2014.07.075 | |
dc.relation | Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela - Ramírez JE, Kelly SM et al. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine. 2018; 36:1016–1023. https://doi.org/10.1016/j.vaccine.2017.12.050 | |
dc.relation | Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant technology facilitate the realization of a fertility-control vaccine for possums?. New Zeal J Zool. 2011; 38(1):91-111, https://doi.org/10.1080/03014223.2010.541468 | |
dc.relation | Hay BA, Li J, Guo M. Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology. 2018; 112:63-74. https://doi.org/10.1016/j.theriogenology.2017.11.003 | |
dc.relation | https://revistas.unisucre.edu.co/index.php/recia/article/download/e760/895 | |
dc.relation | Núm. 2 , Año 2020 : RECIA 12(2):JULIO-DICIEMBRE 2020 | |
dc.relation | e760 | |
dc.relation | 2 | |
dc.relation | e760 | |
dc.relation | 12 | |
dc.relation | Revista Colombiana de Ciencia Animal - RECIA | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://revistas.unisucre.edu.co/index.php/recia/article/view/e760 | |
dc.subject | Contraception | |
dc.subject | GnRH | |
dc.subject | immunocastration | |
dc.subject | spermatozoa | |
dc.subject | vaccines | |
dc.subject | zona pellucida | |
dc.subject | Anticoncepción | |
dc.subject | GnRH | |
dc.subject | inmunocastración | |
dc.subject | espermatozoides | |
dc.subject | vacunas | |
dc.subject | zona pelúcida | |
dc.title | Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria. | |
dc.type | Artículo de revista | |
dc.type | Journal article | |