dc.relation | Abdelaziz, A., Leite, G., Belhaj, M., & Hallenbeck, P. (2014) Screening microalgae native to Quebec for
wastewater treatment and biodiesel production. Bioresour Technol, 157, 140–148.
Afanasjeva, N. (2014). Conversión pirolítica de los concentrados resino-asfalténicos de los crudos pesados. Rev.
ion, 27(2), 71-86.
Agnello, A. C., Bagard, M., VanHullebusch, E.D., Esposito, G. & Huguenot, D. (2016). Comparative
bioremediation of heavy and petroleum hydrocarbons co-cotaminated soil by natural attenuation,
phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the
Total Environment, 1 – 12.
Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Enhacement of lead (II) Biosorption by microalgal biomass
inmobilized onto loofa (Luffa cylindrica) sponge.
Akhtar, N., Saeed, A., & Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable
sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium.
Bioresource Technology, 88, 163–165.
Al-Hasan, R. H., Al-Bader, D. A., Sorkhoh, N. A. & Radwan, S. S. (1998). Evidence for n -alkane consumption
and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Marine
Biology, 130 (3), 521–527. doi:10.1007/s002270050272.
Allen, R. J., & Waclaw, B. (2018). Microbial population dynamics and evolution: a statistical physicist’s guide.
Reports on Progress in Physics. doi:10.1088/1361-6633/aae546
Andrade, C. & Andrade, L. (2017). An overview on the application of genus Chlorella in biotechnological
processes. J. Adv. Res Biotech, 2 (1), 1-9.
Angulo M, E., Castellar O, G., Cely, B, M., Ibáñez S, L., & Prasca M, L. (2017). Decoloración de aguas
residuales de una industria de pinturas por la microalga Chlorella sp. Revista MVZ Córdoba, 22 (1), 5706
- 5716. doi:10.21897/rmvz.930.
Atlas, R. M., & Hazen, T. C. (2011). Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills
in U.S. History. Environmental Science & Technology, 45 (16), 6709–6715.doi:10.1021/es2013227.
Autoridad Nacional de Licencias Ambiental (2018). Base de datos de contingencia de hidrocarburos 2013 –
2018. Recuperado de:
file:///C:/Users/Usuario/Downloads/A_1150347_2018814Base%20de%20datos%20Contingencias%20
Hidrocarburos%20a%20Julio%2016%20de%202018.pdf.
Azcón, B. J., & Talón, M. (2008). Fundamentos de fisiología vegetal. Recuperado de:
http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetal2008Azcon..pdf.
Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based
on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology
and Biotechnology, 32 (11). doi:10.1007/s11274-016-2137-x.
Bajwa, K., Bishnoi, R. N., Kirrolia, A., Sharma, J., Gupta, S. (2017). Comparison of various growth media
composition for physio-biochemical parameters of biodiesel producing microalgal species
(Chlorococcum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella
pyrenoidosa). European Journal of Biotechnology and Bioscience, 5 (6), 27-31.
Balachandran C, Duraipandiyan V, Balakrishna K & Ignacimuthu, S. (2012). Petroleum and polycyclic
aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERICPDA-1) isolated from oil contaminated soil. Bioresour. Technol, 112, 83-90.
Barron, M. G. (2017). Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish. Archives of
Environmental Contamination and Toxicology, 73(1), 40–46. doi:10.1007/s00244-016-0360-y
Battah M. G. El-Sayed, A.B., & El-Sayed, E.W (2013). Growth of the green alga Chlorella vulgaris as affected
by different carbon sources. Life Science Journal, 10(1), 2075 – 2082.
Bautista, H. & Rahman, M. (2016). Effects of crude oil pollution in the tropical rainforest biodiversity of
Ecuadorian Amazon Region. Journal of Biodiversity and Environmental Sciences, 8(2), 249-254.
Ben, C. K., Sánchez, E. & Mourad, B. (2015). The role of algae in bioremediation of organic pollutants.
International Research. Journal of Public and Environmental Health, 1 (2), 19-32.
Bergeon, C., Olin, A., Woltmann, S., Stouffer, C., & Taylor, S. (2014). Effects of Oil on Terrestrial Vertebrates:
Predicting Impacts of the Macondo Blowout. Bio Science, 64 (9), 820–828.
Bernard, E., Stanley, I., Grace, O., Ebere, P., Abraham, O. & Ibe, K. (2018). Toxicity and Bioremediation of
Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology, 1
– 16.
Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V., & Collier, T. K. (2016). Environmental effects of the
Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110 (1), 28–51. doi:
10.1016/j.marpolbul.2016.06.027.
Botello, S. W. Ortiz, Varón, J. & Peña, P. S. (2016). Inmovilización microbiana en polímeros sintéticos pa ra
el tratamiento de aguas residuales. Fundación universidad de San Gil, 13 (26), 99 – 110
Boufadel, M. Chen, B., Foght, B., Hodson, P. Lee, K., Swanson, S., & Venosa, A. (2015). The Behaviour and
Environmental Impacts of Crude Oil Released into Aqueous Environments. Recuperado de:
https://www.cepa.com/wp-content/uploads/2016/11/OIW-Report.compressed1.pdf.
Brakstad, O. G., Lewis, A., & Beegle, K. C. (2018). A critical review of marine snow in the context of oil spills
and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Marine Pollution
Bulletin, 135, 346–356. doi: 10.1016/j.marpolbul.2018.07.028.
Brar, A., Kumar, M., Vivekanand, V., & Pareek, N. (2017). Photoautotrophic microorganisms and
bioremediation of industrial effluents: current status and future prospects. 3 Biotech, 7(18), 1 - 8.
doi:10.1007/s13205-017-0600-5.
Broström, G., A. Carrasco, L. R. Hole, S. Dick, F. Janssen, J. Mattsson, & S. Berger. (2011). Usefulness of high
resolution coastal models for operational oil spill forecast: The Full City accident. Ocean Science
Discussions, 8 (3):1467-1504. http://dx. doi.org/10.5194/osd-8-1467-2011.
Bunty S., Himanshi R., Himanshi, P. & Ruchika, S. (2017). Bioremediation - A Progressive Approach Toward
Reducing Plastic Wastes. International Journal of Current Microbiology and Applied Sciences, 6 (12),
1116-1131.
Busenell, D, I. & Has, k. H. (1940). The utilization of certain hydrocarbons by microorganisms'. Agricultural
experiment station received for publication, 663 – 673.
Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., … Ballottari, M. (2018). Molecular
basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8 (1), 1 – 13.
doi:10.1038/s41598-018-24979-8.
Cerniglia, C. E., Gibson, D. T., & Baalen, C. V. (1979). Algal oxidation of aromatic hydrocarbons: Formation
of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochemical and
Biophysical Research Communications, 88 (1), 50–58. doi:10.1016/0006-291x(79)91695-4.
Chaillan, F., Gugger, M., Saliot, A., Couté, A., & Oudot, J. (2006). Role of cyanobacteria in the biodegradation
of crude oil by a tropical cyanobacterial mat. Chemosphere, 62(10), 1574–1582.doi:
10.1016/j.chemosphere.2005.06.050.
Chand, T., Kumar, V., & Kumar, V (2017). Microbial Remediation of Cyanides. En Ashok, K. R. (Ed).
Bioremediation Current Research and Applications. (pp, 88 - 110).
Chang, S, & Paul, R. (2010). Practical Advances in Petroleum Processing. En Walters, C. (Ed.). The Origin of
Petroleum. (pp. 79 - 103). Nueva York, USA: Springer.
Chang, S. E., Stone, J., Demes, K., & Piscitelli, M. (2014). Consequences of oil spills: a review and framework
for informing planning. Ecology and Society, 19 (2), 1 – 26. doi:10.5751/es-06406-190226.
Chen, B. Y., Chen, C.-Y., Guo, W.-Q., Chang, H.-W., Chen, W.-M., Lee, D.-J., … Chang, J.-S. (2014). Fixedbed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa
cylindrica) sponge. Bioresource Technology, 160, 175–181. doi: 10.1016/j.biortech.2014.02.006.
Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow Cytometry Pulse Width Data Enables Rapid and
Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and
Chlorella vulgaris. PLoS ONE, 9(5), e97269.doi:10.1371/journal.pone.0097269.
Cyprain, O, E. (2011). A petroleum review: uses, processing, products and the environment. Journal Applied
Science, 11 (12), 2084 – 2091.
Daliry, S., Hallajisani, A., Mohammadi, R. J., Nouri, H., & Golzary, A. (2017). Investigation of optimal
condition for Chlorella vulgaris microalgae growth. Global J. Environ. Sci. Manage., 3(2), 217-230.
Dash, H.R. & Das, S. (2012). Bioremediation of mercury and importance of bacterial mer genes. Int.
Biodeterior Biodegradation. 75, 207 - 213.
Demirbas, A., & Taylan, O. (2016) Removing of resins from crude oils. Petroleum Science and Technology,
34:8, 771-777, DOI: 10.1080/10916466.2016.1163397.
Demirbas, A., & Taylan, O. (2016). Removing of resins from crude oils. Petroleum Science and Technology,
34(8), 771–777.doi:10.1080/10916466.2016.1163397.
Di, C. F., Viscaa, A., Altimaria, P., Toroa, L., Masciocchib, B., Gaetano Iaquaniellob, G., Pagnanelli, F. (2016).
Two Stage Process of Microalgae Cultivation for Starch and Carotenoid Production. CHEMICAL
ENGINEERING TRANSACTIONS, 49, 415 – 420.
Duca, C. A., Grova, N., Ghosh, M., Mikael, J., Peter, H. M. Jeroen, H., Vanoirbeek J., Appenzeller, B. &
Godderis, L. (2018). Exposure to Polycyclic Aromatic Hydrocarbons Leads to Nonmonotonic
Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Scientific reports, 8 (10577), 1 –
9. DOI:10.1038/s41598-018-28911-y.
Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic
Journal of Biotechnology, 23, 28–36. doi: 10.1016/j.ejbt.2016.07.003.
Erdogan, E. & karaca, A. (2011). Biorremediation the crude Polluted soils. Asian Journal of Biotechnology, 3
(3), 206 – 213
Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., … Reisser, J.
(2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over
250,000 Tons Afloat at Sea. PLoS ONE, 9(12). doi: 10.1371/journal.pone.0111913.
Ewa, B., & Danuta, M.-Š. (2016). Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of
Applied Genetics, 58 (3), 321–330. doi:10.1007/s13353-016-0380-3.
Farag, S., & Soliman, N. A. (2011). Biodegradation of crude petroleum oil and environmental pollutants by
Candida tropicalis strain. Brazilian Archives of Biology and Technology, 54(4), 821–
830. doi:10.1590/s1516-89132011000400023.
Fingas, M. (2013). The basic of oil spill cleanup. Recuperado de:
file:///C:/Users/Usuario/Downloads/Merv%20Fingas%20.pdf.
Font, S. Y., Gómez, L. L., Kufundala, W. M., Salazar, H. D., Ortega, D. Y. (2018). Variación de la composición
de pigmentos de Chlorella vulgaris Beijerinck, con la aplicación del campo magnético estático. Rev.
Cubana Quím., 30 (1), 55 – 67.
Forero, C. M, Montenegro, R. L., Pinilla, A. G., Melgarejo, M. L (2016). Inmovilización de las microalgas
Scenedesmus ovalternus (Scenedesmaceae) y Chlorella vulgaris (Chlorellaceae) en esferas de alginato
de calcio. Acta biol. Colomb, 21(2), 437-442. doi: http://dx.doi.org/10.15446/abc.v21n2.51253.
Gamilla, M, H. & Ibrahim, M. B. (2004). Algae bioasayy for evaluating the role algae in Biorremediation of
crude oil: i-isolate Strain. Bull. Environ. Contam. Toxicol, 73, 883 – 889.
Gani, P., Mohamed, S. N., Peralta, H., Abdul, A., Umi Kalthsom, P. U. & Abdul Rafiq, A. Z. (2015).
Phycoremediation of wastewaters and potential hydrocarbon from microalgae: a review. Advances in
environmental biology, 9 (20), 1 – 8.
Gatamaneni, B. L., Orsat, V., & Lefsrud, M. (2018). Factors Affecting Growth of Various Microalgal Species.
Environmental Engineering Science.
Gnanavel, G., Mohana, J., Thirumarimurugan, M. & Kannadasan, T. (2013). Degradation of plastics waste using
microbes. Chemical Engineering, 54, 12212-12214.
Godleads, O. A., Prekeyi, T. F., Samson, E. O., Igelenyah, E. (2015). Bioremediation, Biostimulation and
Bioaugmention: A Review. International Journal of Environmental Bioremediation & Biodegradation,
3 (1), 28-39.
Guerrero, U. M. (2018). Ruptura de oleoductos por interferencia externa, daño ambiental y sostenibilidad en
Colombia. Revista producción + limpia, 13 (2), 7 – 13.
Guolan, H., Hongwen, S., & Li, C. L. (2000). Study on the physiology and degradation of dye with immobilized
algae. Artificial Cells, Blood Substitutes, and Biotechnology, 28(4), 347–
363.doi:10.3109/10731190009119364.
Hamed, I. (2016). The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive
Reviews in Food Science and Food Safety, 15 (6), 1104–1123. doi:10.1111/1541-4337.12227.
Hamouda, R. A., Sorour, N. M., & Yeheia, D. S. (2016). Biodegradation of crude oil by Anabaena oryzae,
Chlorella kessleri and its consortium under mixotrophic conditions. International Biodeterioration &
Biodegradation, 112, 128–134. doi: 10.1016/j.ibiod.2016.05.001.
Héctor Cerra, H., Cristina, F, M., Horak, C., Lagomarsio, M., Torno, G., & Zarankin, E. (2010). Manual de
microbiología aplicada a las industrias farmacéutica, cosmética y de productos médicos. Recuperado de:
https://www.aam.org.ar/descarga-archivos/manual-microbiologia-aplicada.pdf.
Helm, C. R., Costa, P. D., Debruyh, D. J. & Oshea, J. T. (2015). Overview of effects of oil spill on marine
mammals. En Fingas, M. (Ed), Handbook of oil spill science and technology. (pp. 455 - 475). Canada.
Copyright C. Recuperado de: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989982.
Hernández, P. A. & Labbé, I. J. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y
Oceanografía, 49 (2), 157-173. DOI 10.4067/S0718-19572014000200001.
Hernández, P. A. & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía,
49(2), 157–173. doi:10.4067/s0718-19572014000200001
Hester, W., Willis, M., Rouhani, S., Steinhoff, A., & Baker, C. (2016). Impacts of the Deepwater Horizon oil
spill on the salt marsh vegetation of Louisiana. Environmental Pollution, 216, 361–370. doi:
10.1016/j.envpol.2016.05.065.
Hodac, L. Christine, H., Spitzer, K., Elster, J., Fashauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Fried, T.
(2016). Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropicaltemperate biogeography. FEMS Microbiology Ecology, 92, 1 – 16.
Hoff, R. Z. (1993). Bioremediation: an overview of its development and use for oil spill cleanup. Marine
Pollution Bulletin, 26 (9), 476–481. doi:10.1016/0025-326x(93)90463-t .
Idris, J., Ahmad, Z., Eyu, G. D. & Chukwuekezie, C. S. (2013). Oil spills hazard and sustainable mitigation
approach: a review. Adv. Mater. Res, 845, 955-959.
Ifeanyi, V. O. & Ogbulie. J. N. (2016). Biodegradation of Crude Oil by Microalgae Microcystis flos-aquae.
Nigerian Journal of Microbiology, 30(2), 3459-3463.
Ilavarasi, A., Mubarakali, D., Praveenkumar, R., Baldev E., & N. Thajuddin (2011). Optimization of Various
Growth Media to Freshwater Microalgae for Biomass Production, 10 (6), 540 – 545.
Infante, C., Angulo, E., Zárate, A., July Z. Flórez, F. & Barrios, Z. (2012). Propagación de la microalga
Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3
(2), 159-164.
Jeffrey, S. W. &. Humphrey, G. F. (1975). New Spectrophotometric Equations for Determining Chlorophylls a,
b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biocbem. Pbysiol. Pflanzen (BPP), 167,
191-194.
Joel Jaimes, S. J., Montesinos, S. A., Barbosa, C. R., Moreno, M. S., Rodríguez, B. D., Ramos, C. T., Ocharán,
H. M., Toscano, G. J., Olga Beltrán, R. J. (2014). El Citocromo P-450. Rev Hosp Jua Mex, 81(4), 250-
256.
Jyothi, K. (2017). Micro algal Immobilization Techniques. J. Algal Biomass Utln, 8(1), 64-70.
Kadri, T., Magdouli, S., Rouissi, T. & Kaur, S. (2018). Ex-situ biodegradation of petroleum hydrocarbons using
Alcanivorax borkumensis enzymes. Biochem. Eng. J. 132, 279-287.
Kalhor, X. A., Movafeghi, A., Mohammadi, N, A., Abedi, E., & Bahrami, A. (2017). Potential of the green alga
Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123 (1-2),
286–290. doi: 10.1016/j.marpolbul.2017.08.045.
Karigar, C. S., & Rao, S. S. (2011). Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review.
Enzyme Research, 2011, 1–11. doi:10.4061/2011/805187.
Langangen, O., Olsen, E., Stige, L. C., Ohlberger, J., Yaragina, N. A., Vikebo, F. B., … Hjermann, D. O.
(2017). The effects of oil spills on marine fish: Implications of spatial variation in natural mortality.
Marine Pollution Bulletin, 119 (1), 102–109. doi: 10.1016/j.marpolbul.2017.03.037.
Lee, E., Jalalizadeh, M., & Zhang, Q. (2015). Growth kinetic models for microalgae cultivation: A review. Algal
Research, 12, 497–512.doi: 10.1016/j.algal.2015.10.004.
Lee, K., Boufadel, M., Chen, B., Foght, J., Hodson, P., Swanson, S., & Venosa, A. (2015). Expert Panel Report
on the Behaviors and Environmental Impacts of Crude Oil Released into Aqueous Environments. Royal
Society of Canada, Ottawa, ON. ISBN: 978-1-928140-02-3.
Li, Y.-R., Tsai, W.-T., Hsu, Y.-C., Xie, M.-Z., & Chen, J. J. (2014). Comparison of Autotrophic and Mixotrophic
Cultivation of Green Microalgal for Biodiesel Production. Energy Procedia, 52, 371–376. doi:
10.1016/j.egypro.2014.07.088.
Liu, Y. Y., Weisberg, R. H., Hu, C. C., & Zheng, L. L. (2013). Trajectory forecast as a rapid response to the
Deepwater Horizon oil spill. En Liu, Y. Y., Macfadyen, A., Ji, Z. G. & R. H. Weisberg, (Ed). Monitoring
and modeling the Deepwater Horizon oil spill: a record-breaking enterprise. Washington, USA:
American Geophysical Union.
López, M. S. & Mesa V. J. (2017). Eficiencia de la microalga Chlorella sp. Para la remoción de nutrientes en las
lagunas de oxidación en la ciudad de manta. Universidad Lanca Eloy Alfaro de Manabí. Tesis de grado,
13 – 16.
López, S, F., Moraña, B. L, Salusso, M. M. (2015). Aislamiento, identificación y cultivo de Chlorella vulgaris
con potencial para suplemento nutricional de peces. Investigaciones en Facultades de Ingeniería del
NOA, 10, 829 - 833.
Mansour, H. B., Mosrati, R., Barillier, D., Ghedira, K., & Chekir-Ghedira, L. (2012). Bioremediation of
industrial pharmaceutical drugs. Drug and Chemical Toxicology, 35(3), 235–
240.doi:10.3109/01480545.2011.591799
Marinho, S. E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Camara, M. R.
(2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International
Biodeterioration & Biodegradation, 65 (1), 253–257. doi: 10.1016/j.ibiod.2010.10.001.
Martínez, O. M., Melé, R. A., Sabaté, C. M. Gordo, O. C., Cibrián, M. N. & Mayor, P. (2017). First evidences
of Amazonian wildlife feeding on petroleum-contaminated soils: A new exposure route to petrogenic
compounds? Environmental Research, 160, 514–517.
McCarthy, K., Niemann, M. Palmowski, D., Peters, K. & Stankewicz, A. (2011). Geoquímica básica del petróleo
para la evaluación de rocas generadoras. Oilfield review, 23 (2), 36 – 48.
McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of the advanced
practitioner in oncology, 4(4), 263–268.
Meier, S., Craig Morton, H., Nyhammer, G., Grøsvik, B. E., Makhotin, V., Geffen, A., … Svardal, A.
(2010). Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages:
Effects on embryos, larvae, and juvenile fish. Marine Environmental Research, 70 (5), 383–394.
Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of
mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste
medium. Preparative Biochemistry and Biotechnology, 46(2), 150–156.
doi:10.1080/10826068.2014.995812.
Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of
mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste
medium. Preparative Biochemistry and Biotechnology, 46(2), 150–
156.doi:10.1080/10826068.2014.995812.
Morales, S. D., Martínez, R. O., Kyndt, J., & Martínez, A. (2014). Heterotrophic growth of microalgae:
metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1–9. doi:10.1007/s11274-
014-1773-2.
Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, P. O. (2016). Potential biotechnological strategies
for the cleanup of heavy metals and metalloids front plan. From Plant Sci, 7, 300 – 310.
Doi: 10.3389/fpls.2016.00303.
Mostafaii, G. R., Aseman, E., Asgharnia, H., Akbari, H., Iranshahi, L., & Sayyaf, H. (2016). Efficiency of the
earthworm eisenia fetida under the effect of organic matter for bioremediation of soils contaminated with
cadmium and chromium. Brazilian Journal of Chemical Engineering, 33(4), 827–834. doi:10.1590/0104-
6632.20160334s20150230.
Nair, P. C., McKinnon, R. A., & Miners, J. O. (2016). Cytochrome P450 structure–function: insights from
molecular dynamics simulations. Drug Metabolism Reviews, 48(3), 434–
452.doi:10.1080/03602532.2016.1178771.
NOAA. (2010). Oil Spills in Coral Reefs. Recuperado de:
https://response.restoration.noaa.gov/sites/default/files/Oil_Spill_Coral.pdf.
Onwurah, I. N., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E.& Otitoju, O. F. (2007). Crude Oil Spills in the
Environment, Effects and Some Innovative Clean-up Biotechnologies. Int. J. Environ. Res, 1 (4), 307-
320.
Ortiz, V. M., Romero, M. M., & Meza, R. L. (2018). La biorremediación con microalgas (Spirulina máxima,
Spirulina platensis y Chlorella vulgaris) como alternativa para tratar la eutrofización de la laguna de
Ubaque, Colombia. Rev. investig. desarro. innov, 9 (1), 163-176. doi:
10.19053/20278306.v9.n1.2018.8153.
Pandey, P., Pathak, H., & Saurabh Dave, S. (2016). Microbial Ecology of Hydrocarbon Degradation in the Soil:
A Review. Research Journal of Environmental Toxicology, 10 (1), 1-15.
Paran, G., Norshuhaila, M., Hazel, M., Ab Aziz, A., Umi, K., Abdul, R. (2015). Phycoremediation of
Wastewaters and Potential Hydrocarbon from Microalgae: A Review. Advances in Environmental
Biology, 9(20), 1-8.
Pardo, I. T. (20 de abril del 2018). En Colombia se han derramado 3,7 millones de barriles de crudo. El Tiempo.
Recuperado de: https://www.eltiempo.com/vida/medio-ambiente/cifras-de-derrames-de-crudo-encolombia-en-los-ultimos-anos-207664.
Pashaei, R., Gholizadeh, M. Jodeiri I. K. & Ahad, H. (2015). The Effects of Oil Spills on Ecosystem at the
Persian Gulf. Int. J. Rev. Life. Sci., 5 (3), 82-89.
Perelo, W. L. (2010). Review in situ and bioremediation of organic pollutants in aquatic sediments. J. Harzard
Mater, 177, 81 – 89. Doi: 10.1016/j.jhazmat.2009.12.090.
Pérez, G. O., Escalante, F. M. E., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae:
Metabolism and potential products. Water Research, 45(1), 11–36.doi: 10.1016/j.watres.2010.08.037.
Piccini, M., Raikova, S., Allen, M. J., & Chuck, C. J. (2019). A synergistic use of microalgae and macroalgae
for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction.
Sustainable Energy & Fuels, 3, 292 – 301. doi: 10.1039/c8se00408k.
Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). BIOCHEMICAL RESPONSES FROM
BIOMASS OF ISOLATED Chlorella sp., UNDER DIFFERENT CULTIVATION MODES: NON-LINEAR
MODELLING OF GROWTH KINETICS. Brazilian Journal of Chemical Engineering, 35(2), 489–
496.doi:10.1590/0104-6632.20180352s20170188.
Priyadarshani, I., Sahu, D. & Rath, B. (2015). Microalgal bioremediation: Current practices and perspectives. J
Biochem Tech, 3 (3), 299-304.
Prototheca zopfii (Chlorophyta) capaz de utilizar ¿gas oil¿, registrada por primera vez en aguas contaminadas de
Argentina. MARÍA S. VIGNA1,2, JOSEFINA ALBERGHINA1 , SILVANA M. DEL MÓNACO3 & MIGUEL A. GALVAGNO3.
ilizar “gas oil”, registrada por primera vez en aguas contaminadas DARWINIANA ISSN 0011-6793 40(1-4): 45-50.
2002
Ramírez, M. I., Arevalo, A. P., Sotomayor, S., & Bailon M. N. (2017). Contamination by oil crude extraction –
Refinement and their effects on human health. Environmental Pollution, 231, 415–425. doi:
10.1016/j.envpol.2017.08.017.
Ray, S. (2014). Bioremediation of Pesticides. Microbial Biodegradation and Bioremediation, 511–
518. doi:10.1016/b978-0-12-800021-2.00022-4
Roberts, D. A., Paul, N. A., Bird, M. I., & de Nys, R. (2015). Bioremediation for coal-fired power stations using
macroalgae. Journal of Environmental Management, 153, 25–32. doi: 10.1016/j.jenvman.2015.01.036.
Rodríguez, R. P., Sánchez, M. Y., Zumalacárregui, C. L., Osney, P., Hernández, M. A., Echeveste, M. P.,
Lombardie, T. A. (2015). Obtención de biomasa de microalga Chlorella vulgaris en un banco de prueba
de fotobiorreactores de columna de burbujeo. AFINIDAD LXXIII, 574, 125 – 129.
Romero, L. J. (2014). Adaptación de microalgas a contaminantes antropogénicos emergentes: aplicaciones
(Tesis doctoral). Universidad Complutense de Madrid, Departamento de producción animal. Recuperado
de:
Saeed, A., & Iqbal, M. (2013). Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a
tool for biotechnological applications. Biotechnology Progress, 29(3), 573–600. doi:10.1002/btpr.1702.
Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition,
production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable
Energy Reviews, 35, 265–278.doi: 10.1016/j.rser.2014.04.007.
Sammarco, P. W., Kolian, S. R., Warby, R. A., Bouldin, J. L., Subra, W. A. & Porter, S. A. (2013). Distribution
and concentrations of petroleum hydrocarbons associated with the BP/ Deepwater Horizon Oil Spill,
Gulf of Mexico. Mar. Pollut. Bull. 73(1), 129-143.
Santos, J., Vetere, A., Wisniewski, A., Eberlin, M., & Schrader, W. (2018). Comparing Crude Oils with
Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and
Asphaltenes. Energies, 11(10), 2767.doi:10.3390/en11102767.
Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life
Science, 2 (2), 202 – 213.
Shen, H. (2016). Polycyclic Aromatic Hydrocarbons Their Global Atmospheric Emissions, Transport, and Lung
Cancer Risk. Recuperado:
file:///C:/Users/Usuario/Downloads/(Springer%20Theses)%20Huizhong%20Shen%20(auth.
Smith, S. j., Aardenne, V. J., Klimont, R, J., Andres, J. R., Volke, A. & Arias, D. (2011). Anthropogenic sulfur
dioxide emissions: 1850–2005 S. Atmos. Chem. Phys, 11, 1101–1116.
Suleman, S. (2011). Oil Spills: Law on Liability with Special Reference to the Indian Regime. SSRN Electronic
Journal, 1(48), 1 – 32. doi:10.2139/ssrn.2044827.
Troisi, G., Barton, S., & Bexton, S. (2016). Impacts of oil spills on seabirds: Unsustainable impacts of nonrenewable energy. International Journal of Hydrogen Energy, 41(37), 16549–16555. doi:
10.1016/j.ijhydene.2016.04.011.
Uma, A, M., Aruna, S., Gomathi, M. & Ali H. A. (2017). Bioremediation by free and inmobilized bacteria
isolated from tannery effluent. Impact Journals, 5 (7), 75 – 90.
Uzoh, C. V., Ifeanyi, V. O., Okwuwe, C. I., Oranusi, S. U., Braide, W., Iheukwumere, I. H…. Ntamzor, B.G.
(2015). Effect of Light on the Biodegradation of Crude Oil by the Algae Closterium species. Journal of
Natural Sciences Research, 5 (22), 112 – 118.
Vacca J. E., Victor, A., Gardo, R., Angulo, M., Diana, M. & Puentes, … Plaza, V. (2017). Uso de la microalga
Chlorella sp. viva en suspensión en la decoloración del agua residual de una empresa textil. Prospect,
15 (1), 93 – 99.
Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry,
38(5), 719–833.doi:10.1016/j.orggeochem.2007.01.001
Velásquez, A. (2016). Contaminación de suelos y aguas por hidrocarburos en Colombia: Análisis de la
fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y
Ambiental, 8 (1158), 153 – 169.
Velázquez, J. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Fito remediación como
estrategia biotecnológica de recuperación. Revista de investigación agraria y ambiental, 8 (1), 151 – 167.
Walters, C. (2007). The origin of petroleum. En Hsu, C. & Robinson, P. (Ed), practical Advances in Petroleum
Procesing (pp, 79 – 101). New York, USA. Springer.
Willey, J. Sherwood, L. & Woolverton. (2014). Prescotts Microbiology. Nueva York, Estados Unidos:
McGrawHill.
Wong, H. Y., Ho, K. C., Leung, H. M., & Yung, K. K. (2017). Growth Medium Screening for Chlorella vulgaris
Growth and Lipid Production. Journal of Aquaculture & Marine Biology 6 (1), 1 – 10.
Wood, J. & Franks, A. (2016). Microorganisms in heavy metal bioremediation: strategies for applying microbialcommunity engineering to remediate soils. AIMS Bioengineering, 3 (2): 211-229.
Xiong, J. Q., Kurade, M. B. & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater
microalga, Chlorella vulgaris. Chem. Eng. J, 313(1), 1251-1257.
Xu, Y., & Harvey, P. J. (2019). Carotenoid Production by Dunaliella salina under Red Light. Antioxidants, 8(5),
123.doi:10.3390/antiox8050123.
Yan, Y., Fu, D., & Shi, J. (2019). Screening and Immobilizing the Denitrifying Microbes in Sediment for
Bioremediation. Water, 11(3), 614. doi:10.3390/w11030614.
Yang, J., Dong, F. Q., Dai, Q. W., Liu, M. X., Nie, X. Q., Zhang, D., Ma, J. L. & Zhou, X. (2015). Biosorption
of radionuclide uranium by Deinococcus radiodurans. Europepmc.org, 35 (4), 1010-1014.
Yemashova, N. A., Murygina, V. P., Zhukov, D. V., Zakharyantz, A. A., Gladchenko, M. A., Appanna, V., &
Kalyuzhnyi, S. V. (2007). Biodeterioration of crude oil and oil derived products: a review. Reviews in
Environmental Science and Bio/Technology, 6(4), 315–337. doi:10.1007/s11157-006-9118-8.
Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for
biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of
Hydrogen Energy, 42(12), 8505–8517. doi: 10.1016/j.ijhydene.2016.12.021.
Zobell, C. E. (1946). Action of Microorganisms on hydrocarbons. Bacterial Rev., 10 (295), 1 - 49. | |