dc.relation | ABNT/CB-002 Construção Civil. (2014). Projeto de estruturas de concreto—Procedimento.
ABNT - Associação Brasileira de Normas Técnicas.
ACI. (1947). ACI Proceedings. 33.
ACI Committee 213. (1987). ACI 213R-87 Report of High-Strength Concrete (Reapproved
1999). Farmington Hills, MI: American Concrete Institute.
ACI Committee 237. (2007). ACI 237R-07 Self-Consolidating Concrete. Farmington Hills,
MI: American Concrete Institute.
ACI Committee 318. (1956). Building code requirements for structural concrete (ACI 318-
56). Farmington Hills, MI: American Concrete Institute.
ACI Committee 318. (1963). Building code requirements for structural concrete (ACI 318-
63). Farmington Hills, MI: American Concrete Institute.
ACI Committee 318. (1971). Building code requirements for structural concrete (ACI 318-
71). Farmington Hills, MI: American Concrete Institute.
ACI Committee 318. (1995). Building code requirements for structural concrete (ACI 318-
95) and commentary (ACI 318R-95). Farmington Hills, MI: American Concrete
Institute.
ACI Committee 318. (1999). Building code requirements for structural concrete (ACI 318M99) and commentary (ACI 318MR-99). Farmington Hills, MI: American Concrete
Institute.
ACI Committee 318, & American Concrete Institute. (2001). Building code requirements for
structural concrete (ACI 318-02) and commentary (ACI 318R-02). Farmington Hills,
MI: American Concrete Institute.
ACI Committee 318, & American Concrete Institute. (2004). Building code requirements for
structural concrete (ACI 318-05) and commentary (ACI 318R-05). Farmington Hills,
MI: American Concrete Institute.
ACI Committee 318, & American Concrete Institute. (2011). Building code requirements for
structural concrete (ACI 318-11) and commentary. Farmington Hills, MI: American
Concrete Institute.
ACI Committee 363. (1992a). ACI 363R-92 Report of High-Strength Concrete (Reapproved
1997). Farmington Hills, MI: American Concrete Institute.
ACI Committee 363. (1992b). ACI 363R-92 Report of High-Strength Concrete (Reapproved
1997). Farmington Hills, MI: American Concrete Institute.
Adrian Pauw. (1960). Static modulus of elasticity of concrete as affected by density. Journal
Proceedings, 57(12). https://doi.org/10.14359/8040
Ahmed, S. (1955). Effect of capping on the compressive strength of concrete cubes.
Magazine of Concrete Research, 7(19), 21–24.
https://doi.org/10.1680/macr.1955.7.19.21
AIS. (1999). NSR-98: Normas colombianas de diseño y construcción sismo-resistente.
Santafé de Bogotá: Asociación Colombiana de Ingeniería Sísmica.
AIS. (2010). NSR-10: Normas colombianas de construccion y diseño sismoresistente.
Bogotá: ASOCIACIÓN COLOMBIANA DE INGENEIRÍA SÍSMICA. AIS.
Alcaldia de Toluviejo. (s/f). Localización del municipio de Toluviejo. Recuperado el 10 de
noviembre de 2019, de Nuestro Municipio—Alcaldía Municipal de Toluviejo
website: http://www.toluviejo-sucre.gov.co/municipio/nuestro-municipio-17525
American Concrete Institute. (2008). Requisitos de reglamento para concreto estructural
(ACI 318S-08) y comentario: (Versión en español y en sistema métrico). Farmington
Hills, MI.: American Concrete Institute. American Concrete Institute, Comité ACI 318, & Comité ACI 318. (2015). Requisitos de
reglamento para concreto estructural (ACI 318S-14) y comentario (ACI 318SR-14):
(Versión en español y en sistema métrico SI).
Araújo, S. S., Guimarães, G. N., & Geyer, A. L. B. (2012). Influence of the type of measuring
device in determining the static modulus of elasticity of concrete. Revista IBRACON
de Estruturas e Materiais, 5(5), 555–575. https://doi.org/10.1590/S1983-
41952012000500001
Barrera Olmos, R. (1999). Geología del departamento de Sucre [Mapa Geológico]. Sucre:
Instituto de Invetsigación e Información Geocientifica, Minero-Ambiental y Núclear.
INGEOMINAS.
Beer, F. P., Johnston, E. R., Dewolf, J. T., Mazurek, D. F., & Murrieta Murrieta, J. E. (2013).
Mecánica de materiales (5a ed.). México, D.F.: McGraw-Hill Interamericana.
Beshrb, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate
quality on the mechanical properties of high strength concrete. Construction and
Building Materials, 17, 97–103.
Beushausen, H., & Dittmer, T. (2015). The influence of aggregate type on the strength and
elastic modulus of high strength concrete. Construction and Building Materials, 74,
132–139. https://doi.org/10.1016/j.conbuildmat.2014.08.055
Beverly, P., & International Federation for Structural Concrete (Eds.). (2013). Fib model
code for concrete structures 2010. Berlin: Ernst & Sohn.
British Standards Institution. (2004). Eurocode 2: Design of concrete structures. London:
British Standards Institution.
British Standards Institution. (2013). Testing hardened concrete. Part 13, Part 13,.
C09 Committee. (2014). Test Method for Static Modulus of Elasticity and Poissons Ratio of
Concrete in Compression. https://doi.org/10.1520/C0469_C0469M-14 C09 Committee. (2015). Practice for capping cylindrical concrete specimens.
https://doi.org/10.1520/C0617_C0617M-15
C09 Committee. (2018). Test Method for Compressive Strength of Cylindrical Concrete
Specimens. https://doi.org/10.1520/C0039_C0039M-18
Canadian Standards Association. (2004). Design of concrete structures: CAN/CSA-A23.3-04 :
a National Standard of Canada (approved July 2007), (reaffirmed 2010).
Mississauga, Ont.: Canadian Standard Association.
CIRSOC, & INTI. (2005). CIRSOC 201. COMENTARIOS AL REGLAMENTO ARGENTINO
DE ESTRUCTURAS DE HORMIGÓN. Argentina: INSTITUTO NACIONAL DE
TECNOLOGÍA INDUSTRIAL.
Clavijo Torres, J., & Barrera Olmos, R. (2001). Geología de las planchas 44 Sincelejo y 52
Sahagún (p. 64) [Memoria explicativa]. Instituto de investigación e información
geocientífica, minero-ambiental y nuclear Ingeominas.
Colombia. (1984, julio 25). DECRETO NUMERO 1400 DE 1984 Código Colombiano de
Construcciones Sismo-Resistentes. Presidencia de la Republica.
Comisión Permanente del Hormigón. (2010). EHE-08. Instrucción de hormigon Estructural
(4a ed.). España: DTU P 18-702.
Committee 318. (2019). 318-19 Building code requirements for structural concrete and
commentary. https://doi.org/10.14359/51716937
Committee 318, A. C. I., & Institute, A. C. (1989). Building Code Requirements for
Reinforced Concrete (ACI 318-89) and Commentary–ACI 318R-89. Recuperado de
https://books.google.com.co/books?id=xoTdugEACAAJ
Committee BD-002. (2018). AS 3600:2018 Concrete structures. Sydney: Standards Australia. D18 Committee. (2014). Test Methods for Compressive Strength and Elastic Moduli of Intact
Rock Core Specimens under Varying States of Stress and Temperatures.
https://doi.org/10.1520/D7012-14E01
D18 Committee. (2019). Practices for Preparing Rock Core as Cylindrical Test Specimens
and Verifying Conformance to Dimensional and Shape Tolerances.
https://doi.org/10.1520/D4543-19
da Silva, A. C., Paulino, M. T., & Cetlin, P. R. (2012). The influence of specimen capping on
the results of compression strength tests of cementitious composites. Rem: Revista
Escola de Minas, 65(3), 291–296. https://doi.org/10.1590/S0370-
44672012000300003
Das, B. M. (2013). Fundamentos de ingeniería de cimentaciones. Australia [etc.: Cengage
Learning.
del Viso, J. R., Carmona, J. R., & Ruiz, G. (2008). Shape and size effects on the compressive
strength of high-strength concrete. Cement and Concrete Research, 38(3), 386–395.
https://doi.org/10.1016/j.cemconres.2007.09.020
Donza, H., Cabrera, O., & Irassar, E. F. (2002). High-strength concrete with different fine
aggregate. Cement and Concrete Research, 32(11), 1755–1761.
https://doi.org/10.1016/S0008-8846(02)00860-8
DTU P 18-702. (2007). Règles BAEL 91 révisées 99. Règles techniques de conception et de
calcul des ouvrages et constructions en béton armé suivant la méthode des états
limites (150a ed.). Francia.
Economía del Municipio de Toluviejo—Alcaldía Municipal de Toluviejo. (s/f). Recuperado
el 10 de noviembre de 2019, de http://www.toluviejosucre.gov.co/municipio/economia-del-municipio-de-toluviejo FONDONORMA. (2006). NV COVENIN 1743-2006. Proyecto y construcción de obras en
concreto estructural. Caracas.
Geología. (s/f). Recuperado el 10 de noviembre de 2019, de Nuestro municipio—Alcaldía
Municipal de Toluviejo website: http://www.toluviejosucre.gov.co/municipio/nuestro-municipio-626078
Gómes Tapias, J., Montes Ramirez, N. E., Nivia Guevara, Á., & Diederix, H. (2015). Mapa
geológico de Colombia [Mapa Geológico]. Servicio Geologico Colombiano SGC.
HBM. (2019). El puente de Wheatstone | Galgas extensométricas | HBM. Recuperado el 26
de noviembre de 2019, de https://www.hbm.com/es/7163/el-puente-de-wheatstonegalgas-extensometricas/
Huang, Y. H., Liu, L., Sham, F. C., Chan, Y. S., & Ng, S. P. (2010). Optical strain gauge vs.
Traditional strain gauges for concrete elasticity modulus determination. Optik,
121(18), 1635–1641. https://doi.org/10.1016/j.ijleo.2009.03.002
Hunka, P., Kolisko, J., Vokac, M., & Rehacek, S. (2013). Test and technological influences
on modulus of elasticity of concrete—Recapitulation. Procedia Engineering, 65, 266–
272. https://doi.org/10.1016/j.proeng.2013.09.041
IBNORCA. (1987). CBH 87. HORMIGON ARMADO. La paz: Instituto Boliviano de
Normalización y Calidad.
ICONTEC. (1995). NTC504 – Ingeniería civil y Arquitectura. Refrentado de especímenes
cilíndricos de concreto. Recuperado de https://tienda.icontec.org/producto/ntc504-
2/?v=42983b05e2f2
ICONTEC. (2010). NTC673 – CONCRETOS. ENSAYO DE RESISTENCIA A LA
COMPRESIÓN DE ESPECIMENES CILÍNDRICOS DE CONCRETO. (3a ed.).
Bogotá: Instituto Colombiano de Normas Tecnicas y Certificación ICONTEC. ICONTEC. (2016). NTC3937 – Cementos. Arena normalizada para ensayos de cemento
hidráulico. (2a ed.). Recuperado de https://tienda.icontec.org/producto/ntc3937-
2/?v=42983b05e2f2
ICONTEC. (2019). NTC4025 – CONCRETOS. MÉTODO DE ENSAYO PARA
DETERMINAR EL MÓDULO DE ELASTICIDAD ESTÁTICO Y LA RELACIÓN DE
POISSON EN CONCRETO A COMPRESIÓN (2a ed.). Bogotá: Instituto Colombiano
de Normas Tecnicas y Certificación ICONTEC.
Indian Standard. (2007). IS 456:2000. Indian Standard. PLAIN AND REINFORCED
CONCRETE CODE OF PRACTICE (Reaffirmed 2005) (4a ed.). New Delhi:
BUREAU OF INDIAN STANDARDS.
JSCE. (2010). Standard specifications for concrete structures-2007. Materials and
Construction (Vol. 16). Tokyon Japon: Japan Society of Civil Enginners.
Kakizaki, M., & Edahiro, H. (1993). Effects of coarse aggregate characteristics on
mechanical properties of ultra hight -strenght concrete. Journal of Struct, Constr,
Engng., 451, 19–32.
Kassimali, A., Andrade Galán, A. A., & Heredia Mellado, J. F. (2015). Análisis estructural.
Mexico: Cengage Learning.
Komurlu, E., Cihangir, F., Kesimal, A., & Demir, S. (2016). Effect of Adhesive Type on the
Measurement of Modulus of Elasticity Using Electrical Resistance Strain Gauges.
Arabian Journal for Science and Engineering, 41(2), 433–441.
https://doi.org/10.1007/s13369-015-1837-0
Kore, S. D., & Vyas, A. K. (2016). Impact of marble waste as coarse aggregate on properties
of lean cement concrete. Case Studies in Construction Materials, 4, 85–92.
https://doi.org/10.1016/j.cscm.2016.01.002 Li, G., Zhao, Y., Pang, S.-S., & Li, Y. (1999). Effective Young’s modulus estimation of
concrete. Cement and Concrete Research, 29(9), 1455–1462.
https://doi.org/10.1016/S0008-8846(99)00119-2
Li, Z. (2011). Advanced concrete technology. Hoboken, N.J: Wiley.
Liu, B. D., Lv, W. J., Li, L., & Li, P. F. (2014). Effect of moisture content on static
compressive elasticity modulus of concrete. Construction and Building Materials, 69,
133–142. https://doi.org/10.1016/j.conbuildmat.2014.06.094
Lizarazo Marriaga, J., & López Yépez, L. G. (2011). Effect of sedimentary and metamorphic
aggregate on static modulus of elasticity of high-strength concrete. Dyna, Uniersidad
Nacional de Colombia., 78(170), 235–242.
Luengas, C., & Prieto, D. (2017). Mapa de depositos, ocurrencias minerales y distritos
mineros de Colombia año 2016 [Mapa Minero]. Servicio Geologico Colombiano
SGC.
Luengas, C., & Prieto, D. (2019). Mapa de depositos, ocurrencias minerales y distritos
mineros de Colombia año 2018 [Mapa Minero]. Servicio Geologico Colombiano
SGC.
Maia, L., & Aslani, F. (2016). Modulus of elasticity of concretes produced with basaltic
aggregate. Computers and Concrete, 17(1), 129–140.
https://doi.org/10.12989/cac.2016.17.1.129
Maia, L., Azenha, M., Geiker, M., & Figueiras, J. (2012). E-modulus evolution and its
relation to solids formation of pastes from commercial cements. Cement and Concrete
Research, 42(7), 928–936. https://doi.org/10.1016/j.cemconres.2012.03.013
Mark G., A. (1996, diciembre). Aggregates and the deformation properties of concrete. ACI
MATERIALS JOURNAL, pp. 569–577. McCormac, J. C. (1998). Design of reinforced concrete (4th ed). Menlo Park, Calif: AddisonWesley.
Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and
materials (3rd ed). New York: McGraw-Hill.
MIDUVI, & CAMICON. (2014). NEC-SE-HM. ESTRUCTURAS DE HORMIGÓN
ARMADO. Ecuador: Dirección de Comunicación Social, MIDUVI.
Mills, J. C., & Ioannides, A. M. (2007). Laboratory study of larger sized aggregate in
Portland cement concrete. International Journal of Pavement Engineering, 8(4), 253–
263. https://doi.org/10.1080/03081080701440370
Ministerio da Habitaçao, obras públicas e transportes. (1983, julio 30). Decreto-Lei No
348-
C/83. Aprova o Regulamento de Estruturas de Betao Armado e Pré-Esforçado.
Recuperado de I Série- Número 174.
MINISTERO DELLE INFRASTRUTTURE, & E DEI TRASPORTI. (2018, febrero 20).
DECRETO 17 gennaio 2018. Norme tecniche per le costruzioni. GAZZETTA
UFFICIALE DELLA REPUBBLICA ITALIANA PA RTE PRIMA.
MOHURD. (2010). GB 50010-2010(2015). Code for design of concrete structures
(reapprobed 2015). China: China.
Neville, A. (1997). Aggregate bond and modulus of elasticity of concrete. Materials Journal,
94(1), 71–74.
Piasta, W., Góra, J., & Budzyński, W. (2017). Stress-strain relationships and modulus of
elasticity of rocks and of ordinary and high performance concretes. Construction and
Building Materials, 153, 728–739. https://doi.org/10.1016/j.conbuildmat.2017.07.167
Rashid, M. A., Mansur, M. A., & Paramasivam, P. (2002). Correlations between mechanical
properties of High-Strength Concrete. Journal of Materials in Civil Engineering,
14(3), 230–238. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(230) Reseña historica del municipio de Toluviejo. (s/f). Recuperado el 10 de noviembre de 2019,
de Nuestro municipio—Alcaldía Municipal de Toluviejo website:
http://www.toluviejo-sucre.gov.co/municipio/nuestro-municipio
Rocco, C. G., & Elices, M. (2009). Effect of aggregate shape on the mechanical properties of
a simple concrete. Engineering Fracture Mechanics, 76(2), 286–298.
https://doi.org/10.1016/j.engfracmech.2008.10.010
Santos, A. C. D., Arruda, A. M. de, Silva, T. J. da, Vitor, P. D. C. P., & Trautwein, L. M.
(2017). Influence of coarse aggregate on concrete’s elasticity modulus. Acta
Scientiarum. Technology, 39(1), 17.
https://doi.org/10.4025/actascitechnol.v39i1.29873
Santos, A. C. dos, Arruda, A. M. de, Silva, T. J. da, & Vitor, P. de C. P. (2017). Estudo
comparativo entre valores teóricos e resultados experimentais de módulo de
elasticidade de concretos produzidos com diferentes tipos de agregado graúdo.
Ambiente Construído, 17(3), 281–294. https://doi.org/10.1590/s1678-
86212017000300176
Saouma, V. E., Broz, J. J., Brühwiler, E., & Boggs, H. L. (1991). Effect of aggregate and
specimen size on fracture properties of dam concrete. Journal of Materials in Civil
Engineering, 3(3), 204–218. https://doi.org/10.1061/(ASCE)0899-
1561(1991)3:3(204)
SECRETARÍA DE DESARROLLO URBANO Y VIVIENDA Y SECRETARÍA DE
OBRAS Y SERVICIOS. (2017). REGLAMENTO DE CONSTRUCCIONES PARA EL
DISTRITO FEDERAL (p. 712) [Decreto]. Gaceta oficial de la Ciudad de Mexico.
Segura Franco, J. I., & Universidad Nacional de Colombia. Facultad de Ingeniería. (2011).
Estructuras de concreto I. Bogota: Universidad Nacional de Colombia. SENCICO. (2009). NORMA E.060 CONCRETO ARMADO. REGLAMENTO NACIONAL DE
EDIFICACIONES (1a ed.). Lima: DIGIGRAF CORP. SA.
Sensor LVDT (Transformador diferencial de variación lineal). (2017). Recuperado el 26 de
noviembre de 2019, de Ingeniería Mecafenix website:
https://www.ingmecafenix.com/automatizacion/lvdt/
Serrano Guzmán, M. F., & Pérez Ruiz, D. D. (2010). Análisis de sensibilidad para estimar el
módulo de elasticidad estático del concreto. Concreto y Cemento. Investigación y
Desarrollo, 2(1), 17–30.
SIA. (2013). SIA 262:2013 Construction en béton. Zurich: Société suisse des ingénieurs et
des architectes.
Singer, F. L., & Pytel, A. (2003). Resistencia de materiales introducción a la mecánica de
sólidos. México: Oxford.
Sivakugan, N., Shukla, S. K., & Das, B. M. (2013). Rock mechanics: An introduction.
Recuperado de
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk
&AN=1763188
Standards Association of Australia, & Cement and Concrete Association of Australia. (2002).
Reinforced concrete design: In accordance with AS 3600-2001. St Leonards, N.S.W.;
Sydney, N.S.W.: Cement and Concrete Association of Australia ; Standards Australia.
Standards Association of Australia, & Committee BD-002, C. S. (2009). Concrete structures:
AS 3600-2009. Homebush, N.S.W.: Standards Australia.
Stock, A. F., Hannantt, D. J., & Williams, R. I. T. (1979). The effect of aggregate
concentration upon the strength and modulus of elasticity of concrete. Magazine of
Concrete Research, 31(109), 225–234. https://doi.org/10.1680/macr.1979.31.109.225 Tanesi, J., Bentz, D., Jones, S., Beyene, M., Kim, H., Ardani, A., … Stutzman, P. (2017).
Influence of aggregate properties on concrete mechanical performance. National
Institute of Standards and Technology. Recuperado de
https://www.researchgate.net/publication/312489960
Torrado P., L., & Porras A., N. (2009). Determinación de las ecuaciones del módulo de
elasticidad estático y dinámico del concreto producido en Bucaramanga y su área
metropolitana (Tesis Pregrado). UNIVERSIDAD PONTIFICIA BOLIVARIANA
SECCIONAL BUCARAMANGA, Bucaramanga.
Torres Vaca, M. (2011). La caliza en Colombia: Geología, recursos, calidad y potencial.
Bogotá: Instituto de Invetsigación e Información Geocientifica, Minero-Ambiental y
Núclear. INGEOMINAS.
Tung, S. H., Kuo, J. C., Shih, M. H., & Sung, W. P. (2011). Using the simplified 3D DIC
method to measure the deformation of 3D surface. Applied Mechanics and Materials,
121–126, 3945–3949. https://doi.org/10.4028/www.scientific.net/AMM.121-
126.3945
UNIT. (2005). Norma UNIT 1050:2005. Proyecto y ejecución de estructuras de hormigón en
masa o armado. (2a ed.). Uruguay: UNIT.
UPI Chile. (2011, noviembre 4). Lanzan oficialmente el Código de Hormigón Estructural
ACI 318 en Chile [Periodico web]. Recuperado el 28 de octubre de 2019, de El
mostrador website: https://www.elmostrador.cl/ahora/2011/11/04/lanzanoficialmente-el-codigo-de-hormigon-estructural-aci-318-en-chile/
Vakhshouri, B. (2018). Modulus of Elasticity of Concrete in Design Codes and Empirical
Models: Analytical Study. Practice Periodical on Structural Design and
Construction, 23(4), 04018022. https://doi.org/10.1061/(ASCE)SC.1943-
5576.0000382 Vakhshouri, B., & Nejadi, S. (2018). Empirical models and design codes in prediction of
modulus of elasticity of concrete. Frontiers of Structural and Civil Engineering.
https://doi.org/10.1007/s11709-018-0479-1
Wu, K.-R., Chen, B., Yao, W., & Zhang, D. (2001). Effect of coarse aggregate type on
mechanical properties of high-performance concrete. Cement and Concrete Research,
31(10), 1421–1425. https://doi.org/10.1016/S0008-8846(01)00588-9
Yıldırım, H., & Sengul, O. (2011). Modulus of elasticity of substandard and normal
concretes. Construction and Building Materials, 25(4), 1645–1652.
https://doi.org/10.1016/j.conbuildmat.2010.10.009
Zhou, F. P., Lydon, F. D., & Barr, B. I. G. (1995). Effect of coarse aggregate on elastic
modulus and compressive strength of high performance concrete. July 26,1994, 25(1),
177–186. | |