dc.contributor | Avilés Sánchez, Oscar Fernando | |
dc.contributor | Aponte Rodríguez, Jorge Alexander | |
dc.creator | Avilés Carrillo, Valeria | |
dc.date.accessioned | 2021-08-26T22:19:17Z | |
dc.date.accessioned | 2022-09-28T21:29:36Z | |
dc.date.available | 2021-08-26T22:19:17Z | |
dc.date.available | 2022-09-28T21:29:36Z | |
dc.date.created | 2021-08-26T22:19:17Z | |
dc.date.issued | 2021-03-19 | |
dc.identifier | http://hdl.handle.net/10654/38507 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3745998 | |
dc.description.abstract | En este trabajo se expone el desarrollo de tres estrategias de control para un exoesqueleto de muñeca de tres grados de libertad, las cuales garantizan el correcto funcionamiento al moverse dentro de los rangos anatómicos de forma suave. El referido documento enfatiza en la implementación de un control híbrido, ya que, podría ser la opción más idónea al tener la capacidad de integrar variables no solo de posición sino también de fuerza que harán más robusto el funcionamiento del dispositivo de rehabilitación al tener en cuenta la interacción con el entorno, sin embargo, se realizó un estudio comparativo de este controlador con respecto a dos controladores clásicos muy implementados: PID y PD+, con el fin de demostrar las ventajas de utilizar un control híbrido en una aplicación como esta. En este documento se presenta la metodología requerida para asegurar las posiciones y velocidades en un exoesqueleto de muñeca, incorporando estudios de diseño, modelado y simulación a través de herramientas como SimScape ofrecidas por Matlab. | |
dc.language | spa | |
dc.publisher | Ingeniería en Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | Priyanshu Agarwal and Ashish D. Deshpande. Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2015. | |
dc.relation | Hassanin Al-Fahaam, Steve Davis, and Samia Nefti-Meziani. Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators. In 2016 International Conference for Students on Applied Engineering, ICSAE 2016, 2017. | |
dc.relation | F. Amirabdollahian, S. Ates, A. Basteris, A. Cesario, J. Buurke, H. Hermens, D. Hofs, E. Johansson, G. Mountain, N. Nasr, S. Nijenhuis, G. Prange, N. Rahman, P. Sale, F. Schätzlein, B. Van Schooten, and A. Stienen. Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project. Robotica, 2014. | |
dc.relation | Camilo Andres, Alvis Bautista, Nicolas Aranguren Diaz, Jorge Alexander, Aponte Rodríguez, Mauricio Felipe, and Mauledoux Monroy. Diseño, implementacion y puesta en funcionamiento de un sistema de control para exoesqueleto de mienbro inferior. PhD thesis, 2015. | |
dc.relation | George Andrikopoulos, George Nikolakopoulos, and Stamatis Manesis. Motion control of a novel robotic wrist exoskeleton via pneumatic muscle actuators. In IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2015. | |
dc.relation | Jorge Angeles. Fundamentals of Robotic Mechanical Systems - chapter 2. 2007. | |
dc.relation | Jorge Aponte. Integracion simultánea de aspectos cinemáticos y dinamicos para el diseño optimo de un dispositivo para rehabilitacion de muñeca. PhD thesis, 2018. | |
dc.relation | Irene Aprile, Marco Germanotta, Arianna Cruciani, Simona Loreti, Cristiano Pecchioli, Francesca Cecchi, Angelo Montesano, Silvia Galeri, Manuela Diverio, and Catuscia Falsini. Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. Journal of Neurologic Physical Therapy, 44(1):3–14, 2020. | |
dc.relation | Serdar Ates, Claudia J.W. Haarman, and Arno H.A. Stienen. SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Autonomous Robots, 2017. | |
dc.relation | Serdar Ates, Joan Lobo-Prat, Piet Lammertse, Herman Van Der Kooij, and Arno H.A. Stienen. SCRIPT Passive Orthosis: Design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home. In IEEE International Conference on Rehabilitation Robotics, 2013. | |
dc.relation | Michael Ballesteros and Jhonathan Martinéz. Diseño mecánico y construcción de un exoesqueleto de miembros inferiores que emula la marcha humana. PhD thesis, 2015. | |
dc.relation | Barrientos Peñin Balaguer Arcin. Fundamentos de Robotica. 2007. | |
dc.relation | Angelo Basteris, Sharon M. Nijenhuis, Arno H.A. Stienen, Jaap H. Buurke, Gerdienke B. Prange, and Farshid Amirabdollahian. Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review, 2014. | |
dc.relation | J. Houdijn Beekhuis, Ard J.Westerveld, Herman Van Der Kooij, and Arno H.A. Stienen. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. In IEEE International Conference on Rehabilitation Robotics, 2013. | |
dc.relation | Domenico Buongiorno, Edoardo Sotgiu, Daniele Leonardis, Simone Marcheschi, Massimiliano Solazzi, and Antonio Frisoli. WRES: A Novel 3 DoF WRist ExoSkeleton with Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation. IEEE Robotics and Automation Letters, 2018. | |
dc.relation | Eileen Cardoso, Adel Fernández, Sergio Marrero-Osorio, and Pablo Guardado. Modelos cinemático y dinámico de un robot de cuatro grados de libertad. Ingeniería Electrónica, Automática y Comunicaciones, 38(3):56–75, 2017. | |
dc.relation | Javier Cavaller, Victor Anaya, Luis Barceló, Miquel Costa, Ramon Raventós, Jaume Sánchez. Robotics Modelling Planning and Control. | |
dc.relation | Won Hyuk Chang and Yun-Hee Kim. Robot-assisted Therapy in Stroke Rehabilitation. Journal of Stroke, 2013. | |
dc.relation | Harvey Chim. Hand and Wrist Anatomy and Biomechanics: A Comprehensive Guide. Plastic and reconstructive surgery, 2017. | |
dc.relation | Universidad de Murcia. Aparato locomotor - Centro de Medicina del Deporte - Universidad de Murcia. | |
dc.relation | Marie Andre Destarac Eguizabal. Modelado musculo-esquelético del miembro superior y desarrollo del sistema de control de un dispositivo de rehabilitación de hombro. PhD thesis, 2018. | |
dc.relation | Mohammad Esmaeili, Nathanael Jarrassé, Wayne Dailey, Etienne Burdet, and Domenico Campolo. Hyperstaticity for ergonomie design of a wrist exoskeleton. In IEEE International Conference on Rehabilitation Robotics, 2013. | |
dc.relation | Pierluigi Freni, Eleonora Marina Botta, Luca Randazzo, and Paolo Ariano. Innovative hand exoskeleton design for extravehicular activities in space. Number 9783319039572. 2014. | |
dc.relation | Springer-verlag Berlin Heidelberg Gmbh. Atlas of HUlllan Limb Joints. | |
dc.relation | Mahdi Haghshenas-Jaryani, Rita M. Patterson, Nicoleta Bugnariu, and Muthu B.J. Wijesundara. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Journal of Hand Therapy, 2020. | |
dc.relation | Tomohito Higuma, Kazuo Kiguchi, and Jumpei Arata. Low-Profile Two-Degree-of- Freedom Wrist Exoskeleton Device Using Multiple Spring Blades. IEEE Robotics and Automation Letters, 2018. | |
dc.relation | James Hope and Andrew McDaid. Development of Wearable Wrist and Forearm Exoskeleton with Shape Memory Alloy Actuators. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017. | |
dc.relation | Inseong Jo and Joonbum Bae. Design and control of a wearable and force-controllable hand exoskeleton system. Mechatronics, 2017. | |
dc.relation | Legarreta Jon and Raquel Martinez. Dinámica de robots y control. Open Course Ware (OCW), page 46, 2018. | |
dc.relation | Adalbert I Kapandji. Fisiología articular. Médica Panamericana, 1998. | |
dc.relation | Abbas Karamali Ravandi, Esmaeel Khanmirza, and Kamran Daneshjou. Hybrid force/ position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Applied Soft Computing Journal, 2018. | |
dc.relation | R Kelly, V Santibáñez, and A Loría. Control of robot manipulators in joint space, volume 17. 2015. | |
dc.relation | Rafael Kelly and Víctor Santibáñez. Control de Movimiento de Robots Manipuladores, volume 154 Suppl. 2003. | |
dc.relation | Charles Lambelet, Mingxing Lyu, Daniel Woolley, Roger Gassert, and Nicole Wenderoth. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2017. | |
dc.relation | Jaeyong Lee, ByungWook Song, andWoosung Yang. Design of exoskeleton-type wrist human machine interface based on over-actuated coaxial spherical parallel mechanism. Advances in Mechanical Engineering, 2018. | |
dc.relation | E. Lerma, V. Baixauli, F. Selma, and F. García. El papel de la rehabilitación tras las reparaciones de las inestabilidades de muñeca. Revista Iberoamericana de Cirugía de la Mano, 2016. | |
dc.relation | Min Li, Ziting Liang, Bo He, Chen Guang Zhao, Wei Yao, Guanghua Xu, Jun Xie, and Lei Cui. Attention-Controlled Assistive Wrist Rehabilitation Using a Low-Cost EEG Sensor. IEEE Sensors Journal, 2019. | |
dc.relation | A. Lluch, G. Salvà, M. Esplugas, M. Llusá, E. Hagert, and M. Garcia-Elias. El papel de la propiocepción y el control neuromuscular en las inestabilidades del carpo. Revista Iberoamericana de Cirugía de la Mano, 2015. | |
dc.relation | Paweł Maciejasz, Jörg Eschweiler, Kurt Gerlach-Hahn, Arne Jansen-Troy, and Steffen Leonhardt. A survey on robotic devices for upper limb rehabilitation, 2014. | |
dc.relation | F. Marini, V. Squeri, L. Cappello, P. Morasso, A. Riva, L. Doglio, and L. Masia. Adaptive wrist robot training in pediatric rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2015. | |
dc.relation | John A. Martinez, Paul Ng, Son Lu, McKenzie S. Campagna, and Ozkan Celik. Design of Wrist Gimbal: A forearm and wrist exoskeleton for stroke rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2013. | |
dc.relation | Andrew J. McDaid. Development of an Anatomical Wrist Therapy Exoskeleton (AWTEx). In IEEE International Conference on Rehabilitation Robotics, 2015. | |
dc.relation | Medisur. The Wrist Joint Complex: Anatomical, Physiological and Biomechanical Aspects, Characteristics, Classification, and Treatment of Distal Radius Fractures. Medisur, 2016. | |
dc.relation | Kenneth Ochoa. Aportes de la ingeniería a la salud y la calidad de vida: una revisión. Revista de Tecnología, 12(3):88–98, 2013. | |
dc.relation | Nurdos Omarkulov, Kuat Telegenov, Maralbek Zeinullin, Iliyas Tursynbek, and Almas Shintemirov. Preliminary mechanical design of NU-Wrist: A 3-DOF self-Aligning Wrist rehabilitation robot. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016. | |
dc.relation | Ali Utku Pehlivan, Fabrizio Sergi, Andrew Erwin, Nuray Yozbatiran, Gerard E. Francisco, and Marcia K. O’Malley. Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica, 2014. | |
dc.relation | Joel C. Perry, Shawn Trimble, Luiz Gustavo Castilho Machado, Jeremiah S. Schroeder, Aitor Belloso, Cristina Rodriguez-De-Pablo, and Thierry Keller. Design of a springassisted exoskeleton module for wrist and hand rehabilitation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016. | |
dc.relation | Evan Pezent, Chad G. Rose, Ashish D. Deshpande, and Marcia K. O’Malley. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2017. | |
dc.relation | José Luis Pons. Wearable Robots: Biomechatronic Exoskeletons. Number 1. 2003. | |
dc.relation | Dmitry Popov, Igor Gaponov, and Jee Hwan Ryu. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Transactions on Mechatronics, 2017. | |
dc.relation | Vladimir Prada, Paola Niño, and Oscar Avilés. Control Híbrido control Fuerza-Posición para manipulador de 2 GDL, volume 1. Editorial academica española, 2012. | |
dc.relation | Fernando Reyes. Robotica - control de Robots manipuladores, volume 1. Alpha omeg edition, 2011. | |
dc.relation | Eduardo Rocon and José Luis Pons. Exoskeletons in Rehabilitation Robotics, volume 83 STAR. 2012. | |
dc.relation | Andres F. Ruiz-Olaya. Towards a robotic exoskeleton for remote evaluation of elbow and wrist joints. In International Conference on Virtual Rehabilitation, ICVR, 2015. | |
dc.relation | Jose Maria Sabater-navarro. ROBOTICA MEDICA, Notas prácticas para el aprendizaje de la robótica en bioingeniería. Number December 2015. 2013. | |
dc.relation | André Schiele. Fundamentals of ergonomic exoskeleton robots. 2008. | |
dc.relation | David Serrano, Dorin Sabin Copaci, Luis Moreno, and Dolores Blanco. SMA based wrist exoskeleton for rehabilitation therapy. In IEEE International Conference on Intelligent Robots and Systems, 2018. | |
dc.relation | Rong Song, Kai Yu Tong, Xiaoling Hu, andWei Zhou. Myoelectrically controlled wrist robot for stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2013. | |
dc.relation | Lee Sutton, Hadi Moein, Ali Rafiee, John D.W. Madden, and Carlo Menon. Design of an assistive wrist orthosis using conductive nylon actuators. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016. | |
dc.relation | Kuan Yi Wu, Yin Yu Su, Ying Lung Yu, Ching Hui Lin, and Chao Chieh Lan. A 5- Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2019. | |
dc.relation | Zhen Gang Xiao, Ahmed M. Elnady, and Carlo Menon. Control an exoskeleton for forearm rotation using FMG. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.title | Diseño e implementación de un sistema de control híbrido para exoesqueleto de miembro superior con énfasis en muñeca | |