dc.contributorGonzález Guzmán, Juan Manuel
dc.creatorGarcia Bello, Nestor Eduardo
dc.date.accessioned2022-02-25T14:25:19Z
dc.date.accessioned2022-09-28T21:27:01Z
dc.date.available2022-02-25T14:25:19Z
dc.date.available2022-09-28T21:27:01Z
dc.date.created2022-02-25T14:25:19Z
dc.date.issued2021-12-03
dc.identifierhttp://hdl.handle.net/10654/40215
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3745365
dc.description.abstractEl presente trabajo tiene como finalidad hacer un análisis ambiental en torno a la posible utilización de biosólidos generados en las PTAR, como alternativa en la fabricación de ladrillos de arcilla. En primera instancia, se realizó una revisión de literatura sistemática, utilizando las bases de datos disponibles en la universidad, analizando los distintos impactos ambientales que podría tener la alternativa de la adición de biosólidos en la fabricación de ladrillos de arcilla y se realizaron algunas visitas a ladrilleras cercanas a la ciudad de Bogotá D.C., identificando el proceso productivo de la zona donde se pudo observar que se utiliza principalmente hornos tipo colmena, alimentados por carbón mineral. Con esta información se realizó una matriz DOFA, evidenciando los elementos internos y externos que influyen en la producción de ladrillos de cerámica de forma convencional y los ladrillos con adición de biosólidos, al igual que se identificó los impactos medios y finales de las etapas de la fabricación de los ladrillos, desde la extracción de las materias primas, hasta su disposición como RCD, pasando por la trituración de la arcilla, la mezcla, la cocción, la extrusión el transporte y venta de los ladrillos, al igual que en las etapas de la generación y disposición de los biosólidos. Por último, se fabricaron 40 ladrillos, divididos en grupos de 10 para realizar los ensayos de resistencia a la compresión y absorción en donde se varió el porcentaje de biosólido añadido de tal forma que se tuvo las mezclas con 0% para los ladrillos de control, 5%, 10% y 15%, los ladrillos con cualquiera de las mezclas cumplen con los parámetros físicos estipulados en la norma colombiana para mampostería no estructural.
dc.languagespa
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relationAlisawi, H. A. O. (2020). Performance of wastewater treatment during variable temperature. Applied Water Science, 10(4), 1–6. https://doi.org/10.1007/s13201-020-1171-x
dc.relationBalaguera, A., Carvajal, G. I., Albertí, J., & Fullana-i-Palmer, P. (2018). Life cycle assessment of road construction alternative materials: A literature review. Resources, Conservation and Recycling, 132(December 2017), 37–48. https://doi.org/10.1016/j.resconrec.2018.01.003
dc.relationBalgaranova, J., Petkov, A., Pavlova, L., & Alexandrova, E. (2003). Utilization of wastes from the coke-chemical production and sewage sludge as additives in the brick-clay. Water, Air, and Soil Pollution, 150(1–4), 103–111. https://doi.org/10.1023/A:1026190417523
dc.relationBuyle, M., Braet, J., & Audenaert, A. (2012). LCA in the construction industry : a review. 6(4), 397–405.
dc.relationCAEM. (2015). Validate inventory of the brick sector in Colombia. Climate & Clean Air Coalition, 134. https://www.ccacoalition.org/en/resources/inventory-and-assessment-tool-colombia-black-carbon-and-other-pollutant-emissions-brick
dc.relationCase, S. D. C., Oelofse, M., Hou, Y., Oenema, O., & Jensen, L. S. (2017). Farmer perceptions and use of organic waste products as fertilisers – A survey study of potential benefits and barriers. Agricultural Systems, 151, 84–95. https://doi.org/10.1016/j.agsy.2016.11.012
dc.relationCastillo, D. M., Rojas, J. F., Puerto, C. F., Villalba, N. A., & Córdoba, D. C. (2019). Estudio sectorial de los servicios públicos domiciliarios de acueducto y alcantarillado 2018. In Superintendencia de Servicios Públicos Domiciliarios. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/Publicaciones/2020/Ene/informe_sectorial_aa_2018-20-12-2019.pdf
dc.relationCharles Fitts. (2012). Physical Properties. In Groundwater Science (pp. 23–45). https://doi.org/10.1016/B978-0-12-384705-8.00002-9
dc.relationChávez Porra, A., Rodriguez González, A., Rangel, A. A., & Pinzon, L. F. (2014). Análisis del Manejo de Biosólidos Provenientes de Plantas de Tratamiento de Aguas Residuales -PTAR Tratados con Vermicompostaje para ser Usados en la Análisis del Manejo de Biosólidos Provenientes de Plantas de Tratamiento de Aguas Residuales – PTAR Trata. VII Simposio Internacional de Ingeniería Industrial: Actualidad y Nuevas Tendencias 2014.
dc.relationChávez Porras, Á., Velásquez Castiblanco, Y. L., & Casallas Ortega, N. D. (2017). Características físico-químicas de humus obtenido de biosólidos provenientes de procesos de tratamiento de aguas residuales. Informador Técnico, 81(2), 122. https://doi.org/10.23850/22565035.939
dc.relationÇİmen, Ö., Gök, G., Çelebİ, H., & Gök, O. (2014). The possible environmental impacts of the biosolids in the worldwide. Journal of Selçuk University Natural and Applied Science, 1, 1144–1154.
dc.relationClay - Rock types found in the British Isles - GCSE Geography Revision - BBC Bitesize. (n.d.). Retrieved November 10, 2021, from https://www.bbc.co.uk/bitesize/guides/zs4y6fr/revision/4
dc.relationCoa, V. V., Lubes, V., Polster, J., Silva, M. M. de A., & Lubes, G. (2019). Relationship between Structure and Odor. Food Aroma Evolution, November, 679–694. https://doi.org/10.1201/9780429441837-31
dc.relationCollivignarelli, M. C., Abbà, A., Carnevale Miino, M., & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236(September 2018), 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094
dc.relationCollivignarelli, M. C., Canato, M., Abbà, A., & Carnevale Miino, M. (2019). Biosolids: What are the different types of reuse? Journal of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117844
dc.relationCongreso de colombia. (2001). LEY 685 DE 2001 (agosto 15) Por la cual se expide el Código de Minas y se dictan otras disposiciones. El Congreso de Colombia. Código de Minas Comentado 3 Edición, agosto 15, 17–456. https://doi.org/10.2307/j.ctv13vdh37.4
dc.relationCrini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
dc.relationDabaieh, M., Heinonen, J., El-Mahdy, D., & Hassan, D. M. (2020). A comparative study of life cycle carbon emissions and embodied energy between sun-dried bricks and fired clay bricks. Journal of Cleaner Production, 275, 122998. https://doi.org/10.1016/j.jclepro.2020.122998
dc.relationDe Silva, G. H. M. J. S., & Perera, B. V. A. (2018). Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks. Journal of Building Engineering, 18(March), 252–259. https://doi.org/10.1016/j.jobe.2018.03.019
dc.relationFaleschini, F., Zanini, M. A., Pellegrino, C., & Pasinato, S. (2016). Sustainable management and supply of natural and recycled aggregates in a medium-size integrated plant. Waste Management, 49(2016), 146–155. https://doi.org/10.1016/j.wasman.2016.01.013
dc.relationFiala, J., Mikolas, M., & Krejsova, K. (2019). Full Brick, History and Future. IOP Conference Series: Earth and Environmental Science, 221(1). https://doi.org/10.1088/1755-1315/221/1/012139
dc.relationFořt, J., & Černý, R. (2020). Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Management, 118, 510–520. https://doi.org/10.1016/j.wasman.2020.09.004
dc.relationGhisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114(February), 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007
dc.relationGiraldo Gómez, E. (2000). ¿Combinar o separar? Una discusión con un siglo de antigüedad y de gran actualidad para los bogotanos. Revista de Ingeniería, 11, 21–30. https://doi.org/10.16924/revinge.11.5
dc.relationHasatani, M., Itaya, Y., Muroie, K., & Taniguchi, S. (1993). Contraction characteristics of molded ceramics during drying. Drying Technology, 11(4), 815–830. https://doi.org/10.1080/07373939308916865
dc.relationICONTEC. (2000). NTC 4205. Ingeniería civil y arquitectura. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos. Norma Técnica Colombiana-4205, 14.
dc.relationICONTEC. (2005). NTC 4017. Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla. Norma Técnica Colombiana-4017, 1–30.
dc.relationInstituto colombiano de normas tecnicas. (2009). Unidades de mamposteria de arcilla cocida. ladrillos y bloques cerámicos. parte 3: mamposteria de fachada. 571.
dc.relationInstituto Nacional De Vias. (2014). Norma INV E 124-14. Análisis Granulométrico Por Medio Del Hidrómetro, 1–9.
dc.relationJ.A.Cusidó, M.Devant, M.Celebrovsky, J.Riba, & F.Arteaga. (1996). ECOBRICK A NEW CERAMIC MATERIAL FOR SOLAR BUILDINGS. Universitat Politecnica de Catalunya, 327–330. https://doi.org/10.1016/0960-1481(96)88871-9
dc.relationKansaon, M., & De, S. G. (2019). USE OF SLUDGE FROM SANITARY SEWAGE TREATMENT PLANTS ( S . T . P ) AND THEIR USE AS RAW MATERIAL IN THE MANUFACTURE OF BRICKS. 16(November 1992), 823–840.
dc.relationKhan, M. W., Ali, Y., De Felice, F., Salman, A., & Petrillo, A. (2019). Impact of brick kilns industry on environment and human health in Pakistan. Science of the Total Environment, 678, 383–389. https://doi.org/10.1016/j.scitotenv.2019.04.369
dc.relationKizinievič, O., Kizinievič, V., Pundiene, I., & Molotokas, D. (2018). Eco-friendly fired clay brick manufactured with agricultural solid waste. Archives of Civil and Mechanical Engineering, 18(4), 1156–1165. https://doi.org/10.1016/j.acme.2018.03.003
dc.relationKrogmann, U., Boyles, L. S., Bamka, W. J., Chaiprapat, S., James, C., Martel, J., Krogmann, U., Boy, L. S., Bamka, W. J., & Chaiprapat, S. (1999). Biosolids Management. 71(5).
dc.relationLimón, J. G. (2013). Los lodos de las plantas de tratamiento de aguas residuales, ¿problema o recurso? Academia de Ingeniería México, 45. http://www.ai.org.mx/presentacion/los-lodos-de-las-plantas-de-tratamiento-de-aguas-residuales-¿problema-o-recurso
dc.relationLingl, H. (1975). Removal of sewage sludge. DE 2336267.
dc.relationLingl, H. (1978). Method of using sludge for making ceramic articles. US 4112033.
dc.relationLofrano, G., & Brown, J. (2010). Wastewater management through the ages: A history of mankind. Science of the Total Environment, 408(22), 5254–5264. https://doi.org/10.1016/j.scitotenv.2010.07.062
dc.relationLoryuenyong, V., Panyachai, T., Kaewsimork, K., & Siritai, C. (2009). Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Management, 29(10), 2717–2721. https://doi.org/10.1016/j.wasman.2009.05.015
dc.relationMilošević, M., & Logar, M. (2017). Properties and characterization of a clay raw material from Miličinica (Serbia) for use in the ceramic industry. Clay Minerals, 52(3), 329–340. https://doi.org/10.1180/claymin.2017.052.3.04
dc.relationMinisterio de ambiente vivienda y desarrollo territorial. (2010). Decreto 3930 del 2010. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 29. http://www.minambiente.gov.co/images/normativa/app/resoluciones/bf-Resolución 610 de 2010 - Calidad del Aire.pdf
dc.relationMinisterio de Vivienda Cuidad y Territorio. (2014). Decreto 1287 “Por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales.”
dc.relationMohajerani, A., Kadir, A. A., & Larobina, L. (2016). A practical proposal for solving the world’s cigarette butt problem: Recycling in fired clay bricks. Waste Management, 52, 228–244. https://doi.org/10.1016/j.wasman.2016.03.012
dc.relationMohajerani, A., & Karabatak, B. (2020). Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Management, 107, 252–265. https://doi.org/10.1016/j.wasman.2020.04.021
dc.relationMohajerani, A., Ukwatta, A., Jeffrey-Bailey, T., Swaney, M., Ahmed, M., Rodwell, G., Bartolo, S., Eshtiaghi, N., & Setunge, S. (2019). A proposal for recycling theworld’s unused stockpiles of treated wastewater sludge (biosolids) in fired-clay bricks. Buildings, 9(1). https://doi.org/10.3390/buildings9010014
dc.relationMolina, F., Sierra, J., Acevedo, S., Maya, G., Toro, M., Alvarez, C., & Uribe, J. (1999). Manual de caracterización de aguas residuales industriales. (pp. 1–54).
dc.relationMousharraf, A., Hossain, M. S., & Islam, M. F. (2012). Potential of Locally Available Clay as Raw Material for Traditional-Ceramic Manufacturing Industries. Journal of Chemical Engineering, 26(October 2016), 34–37. https://doi.org/10.3329/jce.v26i1.10179
dc.relationMozo, W., & Gomez, A. (2016). Biosolids and biosolid ashes as inputs for producing construction materials such as bricks-like Construction Materials. Tecciencia, 11(21), 45–51. https://doi.org/10.18180/tecciencia.2016.21.8
dc.relationMuñoz Velasco, P., Morales Ortíz, M. P., Mendívil Giró, M. A., & Muñoz Velasco, L. (2014). Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Construction and Building Materials, 63, 97–107. https://doi.org/10.1016/j.conbuildmat.2014.03.045
dc.relationNeczaj, E., & Grosser, A. (2018). Circular Economy in Wastewater Treatment Plant–Challenges and Barriers. Proceedings, 2(11), 614. https://doi.org/10.3390/proceedings2110614
dc.relationNorma Tecnica Colombiana. (2005). NTC 4051.
dc.relationNorma Técnica Colombiana. (2004). NTC 5167 PRODUCTOS ORGÁNICOS USADOS COMO ABONOS O FERTILIZANTES Y ENMIENDAS DE SUELO. 1–32.
dc.relationNysdec. (n.d.). Soil Studies: Soil Particle Sizes- NYSDEC Environmental Education Lesson Plan.
dc.relationOkuno, N., Ishikawa, Y., Shimizu, A., & Yoshida, M. (2004). Utilization of sludge in building material. Water Science and Technology, 49(10), 225–232. https://doi.org/10.2166/wst.2004.0650
dc.relationOkuno, N., & Yamada, A. (2000). Evaluation of full scale thermal solidification processes implemented in Tokyo lightweight aggregate, slag and brick. Water Science and Technology, 41(8), 69–76. https://doi.org/10.2166/wst.2000.0144
dc.relationOkuno, Nagaharu, & Takahashi, S. (1997). Full scale application of manufacturing bricks from sewage. Water Science and Technology, 36(11), 243–250. https://doi.org/10.1016/S0273-1223(97)00686-0
dc.relationOrnam, K., Kimsan, M., Ngkoimani, L. O., & Santi. (2017). Study on Physical and Mechanical Properties with Its Environmental Impact in Konawe - Indonesia upon Utilization of Sago Husk as Filler in Modified Structural Fly Ash - Bricks. Procedia Computer Science, 111(2015), 420–426. https://doi.org/10.1016/j.procs.2017.06.043
dc.relationSammut-Bonnici, T., & Galea, D. (2017). SWOT Analysis. i(October), 5–9. https://doi.org/10.1002/9781118785317.weom120103
dc.relationSantacoloma-Londoño, S. P., Buitrago-González, M. E., Colorado-Molina, K., Suárez-Pineda, I., Martínez-Martina, M. A., & Villegas-Méndez, L. C. (2020). Agricultural Use of Biosolids Generated in Wastewater Treatment of a Food Industry. Revista Facultad de Ingeniería, 29(54), e10666. https://doi.org/10.19053/01211129.v29.n54.2020.10666
dc.relationSeparate Sewers | SSWM - Find tools for sustainable sanitation and water management! (n.d.). Retrieved July 24, 2021, from https://sswm.info/sswm-university-course/module-2-centralised-and-decentralised-systems-water-and-sanitation/further/separate-sewers
dc.relationShaw, T. (1889). Improvements in utilizing the waste product from swage works for the manufacture of bricks, tiles, quarries, building blocks, and the like. UK 12623.
dc.relationSilvana Torri, M. C. (2017). E NVIRONMENTAL I MPACT A SSESSMENT Prepared by. Environment, 27(November), 275–302.
dc.relationSlim, J. A., & Wakefield, R. W. (1991). Utilisation of sewage sludge in the manufacture of clay bricks. Water SA, 17(3), 197–202.
dc.relationTeh, S. H., Wiedmann, T., & Moore, S. (2018). Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials. Journal of Economic Structures, 7(1). https://doi.org/10.1186/s40008-018-0112-4
dc.relationTiab, D., & Donaldson, E. C. (2016). Porosity and Permeability. Petrophysics, 67–186. https://doi.org/10.1016/b978-0-12-803188-9.00003-6
dc.relationUkwatta, A., & Mohajerani, A. (2017a). Characterisation of fired-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks. Construction and Building Materials, 142, 11–22. https://doi.org/10.1016/j.conbuildmat.2017.03.047
dc.relationUkwatta, A., & Mohajerani, A. (2017b). Effect of Organic Content in Biosolids on the Properties of Fired-Clay Bricks Incorporated with Biosolids. Journal of Materials in Civil Engineering, 29(7), 04017047. https://doi.org/10.1061/(asce)mt.1943-5533.0001865
dc.relationUkwatta, A., Mohajerani, A., Eshtiaghi, N., & Setunge, S. (2015). Variation in physical and mechanical properties of fired-clay bricks incorporating ETP biosolids. Journal of Cleaner Production, 119, 76–85. https://doi.org/10.1016/j.jclepro.2016.01.094
dc.relationUkwatta, A., Mohajerani, A., Setunge, S., & Eshtiaghi, N. (2018). A study of gas emissions during the firing process from bricks incorporating biosolids. Waste Management, 74, 413–426. https://doi.org/10.1016/j.wasman.2018.01.006
dc.relationUnited Nations. (2015). World Population Prospects. 6.
dc.relationUS EPA, R. 01. (n.d.). What are Combined Sewer Overflows (CSOs)? | Urban Environmental Program in New England.
dc.relationUSEPA. (1994). A plain English guide to the EPA Part 503 Biosolids Rule. Epa-832/R-93/003, September. https://www.epa.gov/biosolids/plain-english-guide-epa-part-503-biosolids-rule
dc.relationValdecantos, A., & Fuentes, D. (2018). Carbon balance as affected by biosolid application in reforestations. Land Degradation and Development, 29(5), 1442–1452. https://doi.org/10.1002/ldr.2897
dc.relationVALLEJO SANTACRUZ, A. M., & CASAS GARCÍA, E. M. (2018). ANÁLISIS OPERATIVO DEL PROCESO DE REMOCIÓN DE MATERIA ORGANICA POR LODOS ACTIVADOS DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE LA UNIVERSIDAD MILITAR NUEVA GRANADA - CAMPUS CAJICÁ, UTILIZANDO EL SOFTWARE LIBRE ASM1. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
dc.relationVieira, C. M. F., Pinheiro, R. M., Rodriguez, R. J. S., Candido, V. S., & Monteiro, S. N. (2016). Clay bricks added with effluent sludge from paper industry: Technical, economical and environmental benefits. Applied Clay Science, 132–133, 753–759. https://doi.org/10.1016/j.clay.2016.07.001
dc.relationVuorinen, H. S., Juuti, P. S., & Katko, T. S. (2007). History of water and health from ancient civilizations to modern times. Water Science and Technology: Water Supply, 7(1), 49–57. https://doi.org/10.2166/ws.2007.006
dc.relationWastewater treatment - Sewerage systems | Britannica. (n.d.). Retrieved July 24, 2021, from https://www.britannica.com/technology/wastewater-treatment/Sewerage-systems
dc.relationWiebusch, B., & Seyfried, C. F. (1997). Utilization of sewage sludge ashes in the brick and tile industry. Water Science and Technology, 36(11), 251–258. https://doi.org/10.1016/S0273-1223(97)00688-4
dc.relationXiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971
dc.relationZaragoza. (2010). Características de las aguas residuales. 62. http://cidta.usal.es/cursos/ETAP/modulos/libros/Caracteristicas.PDF
dc.relationZhang, L. (2013). Production of bricks from waste materials - A review. Construction and Building Materials, 47, 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
dc.relationZhang, Z., Wong, Y. C., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.titleAnálisis y propuesta para el uso potencial de biosólidos de PTAR en la fabricación de ladrillos de arcilla


Este ítem pertenece a la siguiente institución