dc.contributor | Hernández Beleño, Rubén Darío | |
dc.contributor | Mejía Ruda, Edilberto | |
dc.creator | Jiménez García, Mauricio | |
dc.date.accessioned | 2020-06-11T15:01:08Z | |
dc.date.accessioned | 2022-09-28T21:24:58Z | |
dc.date.available | 2020-06-11T15:01:08Z | |
dc.date.available | 2022-09-28T21:24:58Z | |
dc.date.created | 2020-06-11T15:01:08Z | |
dc.date.issued | 2020-02-28 | |
dc.identifier | http://hdl.handle.net/10654/35775 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3744835 | |
dc.description.abstract | Este proyecto de investigación busca simular las condiciones de la atmósfera de Marte y ver como un perfil aerodinámico se comporta bajo dichas circunstancias, buscando abrir las puertas para el futuro diseño de aeronaves que permitan una exploración más eficiente y rápida de la superficie marciana. También, busca comprender la complejidad del flujo en la atmósfera de Marte, dada su baja densidad en comparación con la de la tierra, y el apoyo que da un bajo coeficiente de gravedad. Estos dos factores reducen la fuerza y eficiencia de elevación, lo que hace aún más complejo el vuelo en la atmósfera de Marte. | |
dc.language | spa | |
dc.language | spa | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Maestría en Ingeniería Mecatrónica | |
dc.publisher | Ingeniería - Maestría en Ingeniería Mecatrónica | |
dc.relation | Aiken, E., Ormiston, R., & Young, L. (2000). Future directions in rotorcraft technology at Ames research center. In Proc. American Helicopter Society Annual Forum. | |
dc.relation | Andaluz, A. M. (n.d.). Algoritmos evolutivos y algoritmos genéticos. Madrid: Universidad Carlos III de Madrid. | |
dc.relation | ANDERSON, J. D. (1999). Aircraft performance and design. New York: McGraw-Hill. | |
dc.relation | Anderson, J. D. (2007). Fundamentals of aerodynamics. McGraw-Hill. | |
dc.relation | Anyoji, M., Numata, D., Nagai, H., & Asai, K. (2014). Effects of Mach Number and Specific Heat Ratio on Low-Reynolds-Number Airfoil Flows. AIAA Journal. | |
dc.relation | Balaram, J. (2018). Mars Helicopter Technology Demonstrator. in AIAA Science and Technology Forum and Exposition (AIAA SciTech). | |
dc.relation | Balaram, J., & Tokumaru, P. (2014). Rotorcrafts for Mars exploration. In Proc. International Planetary Probe Workshop, Pasadena. | |
dc.relation | Balaram, J., & Tokumaru, P. (2014). Rotorcrafts for Mars Exploration. in 11th International Planetary Probe Workshop. | |
dc.relation | Bussmann, K., & Ulrich, A. (1947). Systematic Investigations of the Influence of the Shape of the Profile Upon the Position of the Transition Point. | |
dc.relation | Carmona, A. I. (2004). Aerodinámica y actuaciones del avión. Thomsom-Paraninfo. | |
dc.relation | Corfeld, K., Strawn, R., & Long, L. (2002). Computational Analysis of a Prototype Martian Rotorcraft Experiment. in AIAA Applied Aerodynamics Conference. | |
dc.relation | Datta, A., Roget, B., Griffiths, D., Pugliese, G., & Sitaraman, J. (2002). Design of the Martian autonomous rotary-wing vehicle. In Proc. AHS Specialist Meeting on Aerodynamics, Acoustics, and Test and Evaluation. | |
dc.relation | Folkner, W. M. (1997). Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder. Science, 278(5344), 1749. | |
dc.relation | Gordillo Arias de Saavedra, J. M., & Riboux Acher, G. (2012). Introducción a la aerodinámica potencial. Paraninfo. | |
dc.relation | Grip, H. (2017). Flight Dynamics of a Mars Helicopter. in 43rd European Rotorcraft Forum. | |
dc.relation | Heldmann, J. L. (2005, Mayo). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research, p. 110 (E5). | |
dc.relation | Hirt, C., Claessens, S. J., Kuhn, M., & Featherstone, W. E. (2012). Kilometer-resolution gravity field of Mars: MGM2011. Planetary and Space Science, 67(1), 174 - 154. | |
dc.relation | Hoerner, S. (1965). Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics. | |
dc.relation | Hoerner, S., & Borst, H. (1985). Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift. Hoerner Fluid Dynamics. | |
dc.relation | Jepson, J. K. (2003). Enhancement to the inverse design of low speed natural laminar flow airfoils. North Carolina State University: Aerospace Engineering. | |
dc.relation | Konopliv, A. S., Asmar, S. W., Folkner, W. M., Karatekin, Ö., & Nunes, D. C. (2011, January). Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus. 211 (1), p. 401. | |
dc.relation | Kroo , I., & Kunz, P. (2000). Development of the Mesicopter: A miniature autonomous rotorcraft. In Proc. American Helicopter Society Vertical Lift Aircraft Design Conf. | |
dc.relation | La revista informática. (2015). Diseño asistido por computadora. La revista informática. Leishman, G. (2006). Principles of Helicopter Aerodynamics. 2nd ed. New York: Cambridge University Press. | |
dc.relation | LIOU, M. S. (1996). A Sequel to AUSM: AUSM+. Journal of Computational Physics, pp. 364 – 382. | |
dc.relation | Lodders, K., & Fegley, B. (1998). The Planetary Scientist’s Companion. Oxford University Press. | |
dc.relation | Lopez, M., & Walters, D. (2017, FEBRUARY). A recommended correction to the kT − kL − ω transition-sensitive. Journal of Fluids Engineering. | |
dc.relation | Mallama, A., & Hilton, J. L. (2018). Computing apparent planetary magnitudes for The Astronomical Almanac. Astronomy and Computing, 25, 10 - 24. | |
dc.relation | McCORMICK, B. W. (1995). Aerodynamics, aeronautics and flight mechanics. New York: Wiley. | |
dc.relation | McMasters, J., & Henderson, M. (1979). Low-Speed Single-Element Airfoil Synthesis. in Third International Symposium on the Science and Technology of Low Speed and hide Motorless Flight, 19, 23. | |
dc.relation | Morgado, J., Vizinho, R., & Silvestre, M. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds. Aerospace Science and Technology, pp. 207 - 214. | |
dc.relation | Mueller, T. (2001). Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. American Institute of Aeronautics & Astronautics. | |
dc.relation | MUNK, M. (1923). General biplane theory. NACA Report 151. | |
dc.relation | NASA. (2013). The Mars Exploration Rover Mission. | |
dc.relation | Nasa. (2019, 08 29). NASA en Español. (NASA) Retrieved from https://www.lanasa.net/misiones/marte/el-helicoptero-de-la-mision-mars-2020-es-amarrado-al-rover | |
dc.relation | Robert E. Sheldahi, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoils. | |
dc.relation | Savu , G., & Trifu, O. (1995). Photovoltaic rotorcraft for Mars missions. In Proc. Joint Propulsion Conf. and Exhibit. | |
dc.relation | Saxena, A. (2008). Laminar Separation Bubble and Airfoil Design at Low Reynolds Numbers. | |
dc.relation | Scarpin, G. H. (n.d.). Aerodinamica de perfiles. Instituto Universitario Aeronáutico. | |
dc.relation | Schmitz, F. (1967). Aerodynamics of the model airplane. Part 1 - Airfoil measurements. | |
dc.relation | Simon, J. L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., & Laskar, J. (1994, February). Numerical expressions for precession formulae and mean elements for the Moon and planets. Astronomy and Astrophysics. 282 (2), pp. 663–683. | |
dc.relation | Song, H., & Underwood, C. (2007). A Mars VTOL aerobot – preliminary design, dynamics and control. In Proc. IEEE Aerospace Conference. | |
dc.relation | The NACA airfoil series. (n.d.). Retrieved from https://people.clarkson.edu/~pmarzocc/AE429 Thompson, B. (2001). Full throttle to Mars. Rotor & Wing, Phillips Business Information. | |
dc.relation | Tsuzuki, N., Sato, S., & Abe, T. (2004). Conceptual design and feasibility for a miniature Mars exploration rotorcraft. In Proc. International Congress of the Aeronautical Sciences. | |
dc.relation | WALTER, M. A., & ABDU, A. A. (2005). Evaluation of adaptive mesh refinement and coarsening for the computation of compressible flows on unstructured meshes. International Journal for Numerical Methods in Fluids, pp. 999 – 1014. | |
dc.relation | Walters, D., & Cokljat, D. (2008, October 24). A three-equation eddy-viscosity model for Reynolds-Average Navier Stokes simulations of transitional flow. Journal of Fluids Engineering. | |
dc.relation | Walters, D., & Leylek, J. H. (2004, JANUARY ). A new model for boundary layer transition using a single-point RANS approach. Journal of Turbomachinery, pp. 193 - 202. | |
dc.relation | Williams, D. R. (2004). Mars Fact Sheet. National Space Science Data Center. NASA. | |
dc.relation | Young, L. (2000). Use of vertical lift planetary aerial. In NASA Headquarters and Lunar and Planetary Institute Workshop on Mars Exploration Concepts. | |
dc.relation | Young, L. (2000). Vertical lift – not just for terrestrial flight. In Proc. AHS/AIAA/RaeS/SAE International Powered Lift Conference. | |
dc.relation | Young, L. (2002). Engineering studies into vertical lift planetary aerial vehicles. In Proc. AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities. | |
dc.relation | Young, L. (2002). Experimental investigation and demonstration of rotary-wing technologies for flight in the atmosphere of Mars. In Proc. American Helicopter Society Annual Forum Proceedings. | |
dc.relation | Young, L., & Aiken, E. (2001). Vertical lift planetary aerial vehicles: Three planetary bodies and four conceptual design cases. In Proc. European Rotorcraft Forum. | |
dc.relation | Young, L., & Aiken, E. (2002). Engineering Studies into Vertical Lift Planetary Aerial Vehicles. in AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities. | |
dc.relation | Young, L., Aiken, E., & Briggs, G. (2004). Smart rotorcraft field assistants for terrestrial and planetary science. In Proc. IEEE Aerospace Conference. | |
dc.relation | Young, L., Aiken, E., Derby, M., Demblewski, R., & Navarrete, J. (2002). Experimental Investigation and Demonstration of Rotary-Wing Technologies for Flight in the Atmosphere of Mars. in 58th Annual Forum of the AHS International. | |
dc.relation | Young, L., Aiken, E., Gulick, V., & Mancinelli, R. (2002). Rotorcraft as Mars scouts. In Proc. IEEE Aerospace Conf. | |
dc.relation | Young, L., Chen, R., Aiken, E., & Briggs, G. (2000). Design opportunities and challenges in the development of vertical lift planetary aerial vehicles. In Proc. American Helicopter Society International Vertical Lift Aircraft Design Conference. | |
dc.relation | Young, L., Lee, P., Briggs, G., & Aiken, E. (2005). Mars rotorcraft: Possibilities, limitations, and implications for human/robotic exploration. In Proc. IEEE Aerospace Conference. | |
dc.relation | Zubrin, R., & Wagner, R. (1997). The Case for Mars: The Plan to Settle the Red Planet and Why We Must. New York. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas | |
dc.rights | Derechos Reservados - Universidad Militar Nueva Granada, 2020 | |
dc.title | Análisis de un perfil aerodinámico para generar sustentación en la atmósfera de Marte | |
dc.type | info:eu-repo/semantics/masterThesis | |