dc.contributorHernández Beleño, Rubén Darío
dc.contributorMejía Ruda, Edilberto
dc.creatorJiménez García, Mauricio
dc.date.accessioned2020-06-11T15:01:08Z
dc.date.accessioned2022-09-28T21:24:58Z
dc.date.available2020-06-11T15:01:08Z
dc.date.available2022-09-28T21:24:58Z
dc.date.created2020-06-11T15:01:08Z
dc.date.issued2020-02-28
dc.identifierhttp://hdl.handle.net/10654/35775
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3744835
dc.description.abstractEste proyecto de investigación busca simular las condiciones de la atmósfera de Marte y ver como un perfil aerodinámico se comporta bajo dichas circunstancias, buscando abrir las puertas para el futuro diseño de aeronaves que permitan una exploración más eficiente y rápida de la superficie marciana. También, busca comprender la complejidad del flujo en la atmósfera de Marte, dada su baja densidad en comparación con la de la tierra, y el apoyo que da un bajo coeficiente de gravedad. Estos dos factores reducen la fuerza y eficiencia de elevación, lo que hace aún más complejo el vuelo en la atmósfera de Marte.
dc.languagespa
dc.languagespa
dc.publisherUniversidad Militar Nueva Granada
dc.publisherFacultad de Ingeniería
dc.publisherMaestría en Ingeniería Mecatrónica
dc.publisherIngeniería - Maestría en Ingeniería Mecatrónica
dc.relationAiken, E., Ormiston, R., & Young, L. (2000). Future directions in rotorcraft technology at Ames research center. In Proc. American Helicopter Society Annual Forum.
dc.relationAndaluz, A. M. (n.d.). Algoritmos evolutivos y algoritmos genéticos. Madrid: Universidad Carlos III de Madrid.
dc.relationANDERSON, J. D. (1999). Aircraft performance and design. New York: McGraw-Hill.
dc.relationAnderson, J. D. (2007). Fundamentals of aerodynamics. McGraw-Hill.
dc.relationAnyoji, M., Numata, D., Nagai, H., & Asai, K. (2014). Effects of Mach Number and Specific Heat Ratio on Low-Reynolds-Number Airfoil Flows. AIAA Journal.
dc.relationBalaram, J. (2018). Mars Helicopter Technology Demonstrator. in AIAA Science and Technology Forum and Exposition (AIAA SciTech).
dc.relationBalaram, J., & Tokumaru, P. (2014). Rotorcrafts for Mars exploration. In Proc. International Planetary Probe Workshop, Pasadena.
dc.relationBalaram, J., & Tokumaru, P. (2014). Rotorcrafts for Mars Exploration. in 11th International Planetary Probe Workshop.
dc.relationBussmann, K., & Ulrich, A. (1947). Systematic Investigations of the Influence of the Shape of the Profile Upon the Position of the Transition Point.
dc.relationCarmona, A. I. (2004). Aerodinámica y actuaciones del avión. Thomsom-Paraninfo.
dc.relationCorfeld, K., Strawn, R., & Long, L. (2002). Computational Analysis of a Prototype Martian Rotorcraft Experiment. in AIAA Applied Aerodynamics Conference.
dc.relationDatta, A., Roget, B., Griffiths, D., Pugliese, G., & Sitaraman, J. (2002). Design of the Martian autonomous rotary-wing vehicle. In Proc. AHS Specialist Meeting on Aerodynamics, Acoustics, and Test and Evaluation.
dc.relationFolkner, W. M. (1997). Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder. Science, 278(5344), 1749.
dc.relationGordillo Arias de Saavedra, J. M., & Riboux Acher, G. (2012). Introducción a la aerodinámica potencial. Paraninfo.
dc.relationGrip, H. (2017). Flight Dynamics of a Mars Helicopter. in 43rd European Rotorcraft Forum.
dc.relationHeldmann, J. L. (2005, Mayo). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research, p. 110 (E5).
dc.relationHirt, C., Claessens, S. J., Kuhn, M., & Featherstone, W. E. (2012). Kilometer-resolution gravity field of Mars: MGM2011. Planetary and Space Science, 67(1), 174 - 154.
dc.relationHoerner, S. (1965). Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Hoerner Fluid Dynamics.
dc.relationHoerner, S., & Borst, H. (1985). Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift. Hoerner Fluid Dynamics.
dc.relationJepson, J. K. (2003). Enhancement to the inverse design of low speed natural laminar flow airfoils. North Carolina State University: Aerospace Engineering.
dc.relationKonopliv, A. S., Asmar, S. W., Folkner, W. M., Karatekin, Ö., & Nunes, D. C. (2011, January). Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus. 211 (1), p. 401.
dc.relationKroo , I., & Kunz, P. (2000). Development of the Mesicopter: A miniature autonomous rotorcraft. In Proc. American Helicopter Society Vertical Lift Aircraft Design Conf.
dc.relationLa revista informática. (2015). Diseño asistido por computadora. La revista informática. Leishman, G. (2006). Principles of Helicopter Aerodynamics. 2nd ed. New York: Cambridge University Press.
dc.relationLIOU, M. S. (1996). A Sequel to AUSM: AUSM+. Journal of Computational Physics, pp. 364 – 382.
dc.relationLodders, K., & Fegley, B. (1998). The Planetary Scientist’s Companion. Oxford University Press.
dc.relationLopez, M., & Walters, D. (2017, FEBRUARY). A recommended correction to the kT − kL − ω transition-sensitive. Journal of Fluids Engineering.
dc.relationMallama, A., & Hilton, J. L. (2018). Computing apparent planetary magnitudes for The Astronomical Almanac. Astronomy and Computing, 25, 10 - 24.
dc.relationMcCORMICK, B. W. (1995). Aerodynamics, aeronautics and flight mechanics. New York: Wiley.
dc.relationMcMasters, J., & Henderson, M. (1979). Low-Speed Single-Element Airfoil Synthesis. in Third International Symposium on the Science and Technology of Low Speed and hide Motorless Flight, 19, 23.
dc.relationMorgado, J., Vizinho, R., & Silvestre, M. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds. Aerospace Science and Technology, pp. 207 - 214.
dc.relationMueller, T. (2001). Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. American Institute of Aeronautics & Astronautics.
dc.relationMUNK, M. (1923). General biplane theory. NACA Report 151.
dc.relationNASA. (2013). The Mars Exploration Rover Mission.
dc.relationNasa. (2019, 08 29). NASA en Español. (NASA) Retrieved from https://www.lanasa.net/misiones/marte/el-helicoptero-de-la-mision-mars-2020-es-amarrado-al-rover
dc.relationRobert E. Sheldahi, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoils.
dc.relationSavu , G., & Trifu, O. (1995). Photovoltaic rotorcraft for Mars missions. In Proc. Joint Propulsion Conf. and Exhibit.
dc.relationSaxena, A. (2008). Laminar Separation Bubble and Airfoil Design at Low Reynolds Numbers.
dc.relationScarpin, G. H. (n.d.). Aerodinamica de perfiles. Instituto Universitario Aeronáutico.
dc.relationSchmitz, F. (1967). Aerodynamics of the model airplane. Part 1 - Airfoil measurements.
dc.relationSimon, J. L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., & Laskar, J. (1994, February). Numerical expressions for precession formulae and mean elements for the Moon and planets. Astronomy and Astrophysics. 282 (2), pp. 663–683.
dc.relationSong, H., & Underwood, C. (2007). A Mars VTOL aerobot – preliminary design, dynamics and control. In Proc. IEEE Aerospace Conference.
dc.relationThe NACA airfoil series. (n.d.). Retrieved from https://people.clarkson.edu/~pmarzocc/AE429 Thompson, B. (2001). Full throttle to Mars. Rotor & Wing, Phillips Business Information.
dc.relationTsuzuki, N., Sato, S., & Abe, T. (2004). Conceptual design and feasibility for a miniature Mars exploration rotorcraft. In Proc. International Congress of the Aeronautical Sciences.
dc.relationWALTER, M. A., & ABDU, A. A. (2005). Evaluation of adaptive mesh refinement and coarsening for the computation of compressible flows on unstructured meshes. International Journal for Numerical Methods in Fluids, pp. 999 – 1014.
dc.relationWalters, D., & Cokljat, D. (2008, October 24). A three-equation eddy-viscosity model for Reynolds-Average Navier Stokes simulations of transitional flow. Journal of Fluids Engineering.
dc.relationWalters, D., & Leylek, J. H. (2004, JANUARY ). A new model for boundary layer transition using a single-point RANS approach. Journal of Turbomachinery, pp. 193 - 202.
dc.relationWilliams, D. R. (2004). Mars Fact Sheet. National Space Science Data Center. NASA.
dc.relationYoung, L. (2000). Use of vertical lift planetary aerial. In NASA Headquarters and Lunar and Planetary Institute Workshop on Mars Exploration Concepts.
dc.relationYoung, L. (2000). Vertical lift – not just for terrestrial flight. In Proc. AHS/AIAA/RaeS/SAE International Powered Lift Conference.
dc.relationYoung, L. (2002). Engineering studies into vertical lift planetary aerial vehicles. In Proc. AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities.
dc.relationYoung, L. (2002). Experimental investigation and demonstration of rotary-wing technologies for flight in the atmosphere of Mars. In Proc. American Helicopter Society Annual Forum Proceedings.
dc.relationYoung, L., & Aiken, E. (2001). Vertical lift planetary aerial vehicles: Three planetary bodies and four conceptual design cases. In Proc. European Rotorcraft Forum.
dc.relationYoung, L., & Aiken, E. (2002). Engineering Studies into Vertical Lift Planetary Aerial Vehicles. in AHS International Meeting on Advanced Rotorcraft Technology and Life Saving Activities.
dc.relationYoung, L., Aiken, E., & Briggs, G. (2004). Smart rotorcraft field assistants for terrestrial and planetary science. In Proc. IEEE Aerospace Conference.
dc.relationYoung, L., Aiken, E., Derby, M., Demblewski, R., & Navarrete, J. (2002). Experimental Investigation and Demonstration of Rotary-Wing Technologies for Flight in the Atmosphere of Mars. in 58th Annual Forum of the AHS International.
dc.relationYoung, L., Aiken, E., Gulick, V., & Mancinelli, R. (2002). Rotorcraft as Mars scouts. In Proc. IEEE Aerospace Conf.
dc.relationYoung, L., Chen, R., Aiken, E., & Briggs, G. (2000). Design opportunities and challenges in the development of vertical lift planetary aerial vehicles. In Proc. American Helicopter Society International Vertical Lift Aircraft Design Conference.
dc.relationYoung, L., Lee, P., Briggs, G., & Aiken, E. (2005). Mars rotorcraft: Possibilities, limitations, and implications for human/robotic exploration. In Proc. IEEE Aerospace Conference.
dc.relationZubrin, R., & Wagner, R. (1997). The Case for Mars: The Plan to Settle the Red Planet and Why We Must. New York.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas
dc.rightsDerechos Reservados - Universidad Militar Nueva Granada, 2020
dc.titleAnálisis de un perfil aerodinámico para generar sustentación en la atmósfera de Marte
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución