dc.contributor | Ramírez Arias, José Luis | |
dc.contributor | Rubiano Fonseca, Astrid | |
dc.creator | Castiblanco Moreno, Paola Andrea | |
dc.date.accessioned | 2021-11-18T16:08:33Z | |
dc.date.accessioned | 2022-09-28T21:19:52Z | |
dc.date.available | 2021-11-18T16:08:33Z | |
dc.date.available | 2022-09-28T21:19:52Z | |
dc.date.created | 2021-11-18T16:08:33Z | |
dc.date.issued | 2020-12-09 | |
dc.identifier | http://hdl.handle.net/10654/39063 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3743750 | |
dc.description.abstract | El estudio de la robótica blanda explora el uso de materiales alternativos que permitan la creación
de mecanismos flexibles, basados en la naturaleza. Para hacer realidad estos diseños se implementa
el uso de materiales inteligentes, cuyas propiedades permiten ser modificadas bajo estímulos
externos. Una importante aplicación en desarrollo involucra el diseño de sistemas que beneficien
al humano específicamente en salud y rehabilitación. Aprovechando las propiedades mecánicas y
térmicas del material conocido como aleaciones con memoria de forma (SMA-Shape Memory
Alloy), se plantea el diseño de un musculo artificial que logre imitar el fenómeno viscoelástico del
real y pueda ser potencialmente aprovechado para generar movimiento en una prótesis de dedo
robótico blando. | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A., & Sohrabpour, S. (2010). A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. International Journal of Plasticity, 26(7), 976–991. https://doi.org/10.1016/j.ijplas.2009.12.003 | |
dc.relation | Auricchio, Ferdinando, Bonetti, E., Scalet, G., & Ubertini, F. (2012). Some preliminary computacional results on a redefined shape memory alloy model taking into account multiple phase transformations and martensite reorientation. European Congress on Computational Methods in Applied Sciences and Engineering, Eccomas. | |
dc.relation | Chen, X., Pan, S., Feng, P. J., Bian, H., Han, X., Liu, J. H., Guo, X., Chen, D., Ge, H., & Shen, Q. D. (2016). Bioinspired Ferroelectric Polymer Arrays as Photodetectors with Signal Transmissible to Neuron Cells. Advanced Materials, 28(48), 10684–10691. https://doi.org/10.1002/adma.201603618 | |
dc.relation | Cutkosky, M. R. (1989). On Grasp Choice Models, and the desing of hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation, 5(3), 11. http://ieeexplore.ieee.org.ezproxy.umng.edu.co:2048/stamp/stamp.jsp?arnumber=3476 3 | |
dc.relation | Doroudchi, A., & Zakerzadeh, M. R. (2017). An experimental study on controlling a fast response SMA-actuated rotary actuator. 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), 144–149. https://doi.org/10.1109/ICRoM.2017.8466198 | |
dc.relation | HILL, A. V. (1950). The series elastic component of muscle. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society (Great Britain), 137(887), 273–280. https://doi.org/10.1098/rspb.1950.0035 | |
dc.relation | Kapandji, A. I. (2006). Fisiología Articular (M. Torres Lacomba (Ed.); 6th ed.). Editorial Medica Panamericana. | |
dc.relation | Laschi, C., & Cianchetti, M. (2014). Soft robotics: new perpectives for robot bodyware and control. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2014.00003 | |
dc.relation | Lagoudas, D. (2008). Shape Memory Alloys Modeling and Engineering Applications. Springer. | |
dc.relation | Li, J., & Tian, H. (2018). Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation. Mechanical Systems and Signal Processing, 108, 203–215. https://doi.org/https://doi.org/10.1016/j.ymssp.2018.02.004 | |
dc.relation | Ministerio de ciencia e Innovación. (2010). Materiales piezoeléctricos. In Vigilancia tecnológica (Vol. 3). | |
dc.relation | Peng, C., Yin, Y. H., Hong, H. B., Zhang, J. J., & Chen, X. (2017). Bio-inspired Design Methodology of Sensor-actuator-structure Integrated System for Artificial Muscle Using SMA. Procedia CIRP, 65, 299–303. https://doi.org/https://doi.org/10.1016/j.procir.2017.04.016 | |
dc.relation | Quintero Quiroz, C., Jaramillo Zapata, A., De Ossa Jiménez, M. T., & Villegas Bolaños, P. A. (2015). Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores. Revista Colombiana de Médicina Física y Rehabilitación, 25(2), 94–103. https://doi.org/10.28957/rcmfr.v25n2a1 | |
dc.relation | Ramirez, J. L. (2016). Development of an artificial muscle for a soft robotic hand prosthesis. universite Paris Ouest. | |
dc.relation | Ramirez, J. L., Rubiano, A., Jouandeau, N., Gallimard, L., & Polit, O. (2017). Artificial Muscles Design Methodology Applied to Robotic Fingers. In Springer (Ed.), Smart Structures and Materials (pp. 209–225). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-44507-6_11 | |
dc.relation | Rubiano, A. (2016). Smart Control of a Soft Robotic Hand Prosthesis. Université Paris. | |
dc.relation | Trivedi, D., Rahn, C., Kier, W., & Walker, I. (2008). Soft Robotics: Biological inspiration, state of the art, and future research. Applies Bionics and Biomechanics, 5, 99–117. https://doi.org/https://doi.org/10.1080/11762320802557865. | |
dc.relation | Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17(4), 359–411. | |
dc.relation | Zhang, J., Yin, Y., & Zhu, J. (2013). Sigmoid-based hysteresis modeling and high-speed tracking control of SMA-artificial muscle. Sensors and Actuators A: Physical, 201, 264–273. https://doi.org/https://doi.org/10.1016/j.sna.2013.07.036 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.title | Musculo artificial aplicable a una prótesis de dedo robótico blando | |