Nanometrología: Impacto en los sistemas de producción

dc.creatorRuiz Gómez, Estefanía
dc.creatorGiraldo Jaramillo, Luis Fernando
dc.date2016-08-01
dc.identifierhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1771
dc.identifier10.18359/rcin.1771
dc.descriptionThis work is the result of a review of the literature on the application of nanometrology in different industrial sectors and how this one contributes to reach the standards of quality of the products through the measurement of critical parameters in the productive processes, as well as a description of the challenges this science faces in different sectors. The progress and development of new techniques that allow the measurement of the characteristics of nanodevices, nanomaterials, and equipment are reported, ones that have allowed to promote the development of industries, a decrease of costs, and the automation of processes. Within the text, there is reference to industries in progress and the effect that the control of parameters exerts for the optimization of the process, the design of a nanodevice, the growing need for regulation in the use of nanocomposites, and the designing of reliable technical and protocols for the use of nanoparticles. The advancement in nanometrology has contributed to the development of reference materials, tools that increase the accuracy and precision of the measurements, as well as techniques for the calibration of tools and equipment suitable for measurements at nanoscale, which translates into a controlled production process that ensures the quality of the products. Finally, the state of nanometrology in Colombia is included, focusing on industrial processes such as the sector of food, textile, health, and production of nanomaterials, as well as the work developed by research groups.
dc.descriptionEl presente trabajo es el resultado de una revisión bibliográfica sobre: la aplicación de la nanometrología en diferentes sectores industriales y cómo esta contribuye a alcanzar los estándares de calidad de los productos a través de la medición de parámetros críticos en los procesos productivos; así como una descripción de los retos a los que se enfrenta esta ciencia en diferentes sectores. Se reportan los avances y el desarrollo de nuevas técnicas que permiten medir las características de los nanodispositivos, nanomateriales y equipos, lo que ha permitido potenciar el desarrollo de industrias, una disminución de los costos y la automatización de los procesos. Dentro del texto se hace referencia a industrias en progreso y el efecto que tiene el control de parámetros para la optimización de los procesos, el diseño de nanodispositivos y la creciente necesidad de la reglamentación en el uso de nanocompuestos, el diseño de técnica confiables y de protocolos para el uso de nanopartículas. El adelanto de la nanometrología ha contribuido al desarrollo de materiales de referencia, herramientas que aumenten la exactitud y precisión de las medidas, así como técnicas para la calibración de las herramientas y equipos apropiados para las medidas a nanoescala, lo que se traduce en un proceso productivo controlado que garantiza la calidad de los productos. Finalmente, se incluye el estado de la nanometrología en Colombia, enfocada en procesos industriales, como: el sector de alimentos, textil, salud y producción de nanomateriales, así como el trabajo desarrollado por grupos de investigación.
dc.formatapplication/pdf
dc.formattext/html
dc.formatapplication/zip
dc.languagespa
dc.publisherUniversidad Militar Nueva Granada
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1771/1534
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1771/2024
dc.relationhttps://revistas.unimilitar.edu.co/index.php/rcin/article/view/1771/3090
dc.relation/*ref*/Jorio, A. & Dresselhaus, M. S. (2011). Nanometrology Links State of the Art Academic Research and Ultimate Industry Needs for Technological Innovation. MRS Bulletin, 32(12), pp. 988-993. doi: 10.1557/mrs2007.201
dc.relation/*ref*/Bogue, R. (2007). Nanometrology: a critical discipline for the twenty first century. Sensor Review, 27(3), pp. 189-196. doi: 10.1108/02602280710758110
dc.relation/*ref*/Ukraintsev, V. & Banke, B. (2010). Nanoscale measurement tests metrologists. Laser Focus World, 46(12), pp. 68-71.
dc.relation/*ref*/Logothetidis, S. (2010). Nanometrology. En: Sattler, KD. Handbook of Nanophysics. Nueva York, Estados Unidos: CRC Press, pp. 29-45.
dc.relation/*ref*/Ukraintsev, V. & Banke, B. (2012). Review of reference metrology for nanotechnology: significance, challenges, and solutions. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11(1), pp. 11010-11019. doi: 10.1117/1.jmm.11.1.011010
dc.relation/*ref*/Berthold, J. & Imkamp, D. (2013). Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control. J. Sensors Sens. Syst., 2, pp. 1-7. doi: 10.5194/jsss-2-1-2013
dc.relation/*ref*/Jorio, A. & Dresselhaus, M. S. (2008). Nanometrology Sees Progress in Synthesis, Optics, and Microscopy. MRS Bulletin, 33(10), p. 972. doi: 10.1557/mrs2008.208
dc.relation/*ref*/Garner, C. M. & Vogel, E. M. (2006). Metrology Challenges for Emerging Research Devices and Materials. IEEE Transactions on Semiconductor Manufacturing, 19(4), pp. 397-403. doi: 10.1109/tsm.2006.884714
dc.relation/*ref*/Yushchenko, O. V. & Yurko, D. S. (2015). Investigation of Plastic Deformation Considering Nanoscale Effects. Nanomaterials: Application & Properties, 4(1), pp. 1-3.
dc.relation/*ref*/Barker, K. E., Cox, D. & Sveinsdottir, T. (2011). Foresight on the future of public research metrology in Europe. Foresight, 13(1), pp. 5-18. doi: 10.1108/14636681111109660
dc.relation/*ref*/Barsic, G., Simunovic, V. & Katic, M. (2011). Ensuring measurement unity in the field of dimensional nanometrology. Annals of DAAAM & Proceedings, 22 (1), pp. 841-842.
dc.relation/*ref*/Carreteiro-Damasceno, J., Ribeiro, A. R., Balottin, L. B. L. & Granjeiro, J. M. (2013). Nanometrology - challenges for health regulation. Vigilância Sanitária em Debate Soc. Ciência & amp; Tecnol., 1(4), pp. 100-109. doi: 10.3395/vd.v1i4.94en
dc.relation/*ref*/Gavrilenko, V. P., Novikov, Y. A., Rakov, A. V. & Todua, P. A. (2008). Metrology and Standardization For Nanotechnologies. En AIP Conference Proceedings, 99 (1), pp. 286-297. doi: 10.1063/1.2918114
dc.relation/*ref*/Kumar, A. & Jee, M. (2013). Nanotechnology: A Review of Applications and Issues. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 3(4), pp. 1-2.
dc.relation/*ref*/Chang, C., Bukkapatnam, S. & Komanduri, R. (2014). Sensing and Informatics in Laser-Based Nanomanufacturing Processes. En: Nof S.Y., Weiner A.M. & Cheng G.J. Laser and Photonic Systems: Design and Integration. New York. CRC Press. pp. 201-234.
dc.relation/*ref*/Gheorghe, G. I. & Badita, L.-L. (2013). Micro-Nanometrologically and Topographic Characterization of Nanostructured Surfaces. Procedia Engineering, 69, pp. 104-111. doi: 10.1016/j.proeng.2014.02.209
dc.relation/*ref*/Salamon, A. W. (2011). Characterizing Engineered Nanomaterials. R&D Mag, 53 (2), pp. 24.
dc.relation/*ref*/Weckenmann, A., Krämer, P. & Akkasoglu, G. (2012). Metrology base for scientific cognition and technical production. En AIP Conf. Proc., 1431, pp. 283-292. doi: 10.1063/1.4707576
dc.relation/*ref*/Kang, P., Kim, D., Lee, H., Doh, S. & Cho, S. (2011). Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Syst. Appl., 38(3), pp. 2508-2522. doi: 10.1016/j.eswa.2010.08.040
dc.relation/*ref*/Diebold, A. C. (2005). Metrology (including Materials Characterization) for Nanoelectronics. En AIP Conf. Proc, 788(1), pp. 21-32. doi: 10.1063/1.2062935
dc.relation/*ref*/Töpfer, S. C. N., Nehse, U. & Linß, G. (2007). Automated inspections for dimensional micro- and nanometrology. Measurement, 40(2), pp. 243-254. doi: 10.1016/j.measurement.2006.06.010
dc.relation/*ref*/Kang, N., Kim, K. J., Kim, J. S. & Lee, J. H. (2015). Roles of chemical metrology in electronics industry and associated environment in Korea: A tutorial. Talanta, 134, pp. 284-91. doi: 10.1016/j.talanta.2014.11.030
dc.relation/*ref*/Pimpin, A. & Srituravanich, W. (2012). Review on Micro- and Nanolithography Techniques and Their Applications. Engineering Journal, 16(1), pp. 37-65. doi: 10.4186/ej.2012.16.1.37
dc.relation/*ref*/Kang, P., Lee, H., Cho, S., Kim, D., Park, J., Park, C.-K., & Doh, S. (2009). A virtual metrology system for semiconductor manufacturing. Expert Syst. Appl., 36(10), pp. 12554-12561. doi: 10.1016/j.eswa.2009.05.053
dc.relation/*ref*/Liu, S., Chen, X. & Zhang, C. (2015). Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films, 584, pp. 176-185. doi: 10.1016/j.tsf.2015.02.006
dc.relation/*ref*/Likhachev, D. V. (2015). Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication. Thin Solid Films, 589, pp. 258-263. doi: 10.1016/j.tsf.2015.05.049
dc.relation/*ref*/Khan, A. A., Moyne, J. R. & Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. J. Process Control, 18(10), pp. 961-974. doi: 10.1016/j.jprocont.2008.04.014
dc.relation/*ref*/Susto, G. A., Pampuri, S., Schirru, A., Beghi, A. & De Nicolao, G. (2015). Multi step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach. Computers & Operations Research, 53, pp. 328-337. doi: 10.1016/j.cor.2014.05.008
dc.relation/*ref*/Slocum Jr., A. H. & Culpepper, M. L. (2012). Design of a low-cost, precision belt-drive machine for high-throughput nanomanufacturing. Precision Engineering, 36(1), pp. 55-69. doi: 10.1016/j.precisioneng.2011.07.003
dc.relation/*ref*/Malshe, A. P., Rajurkar, K. P., Virwani, K. R., Taylor, C. R., Bourell, D. L., Levy, G., Sundaram, M. M., McGeough, J. A., Kalyanasundaram, V. & Samant, A. N. (2010). Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Ann. - Manuf. Technol, 59(2), pp. 628-651. doi: 10.1016/j.cirp.2010.05.006
dc.relation/*ref*/Hernández-Santana, A. & Graham, D. (2010). Nanolithography: Written with light. Nat. Nanotechnol, 5(9), pp. 629-630. doi: 10.1038/nnano.2010.179
dc.relation/*ref*/Campbell, A. C., Klapetek, P., Valtr, M. & Buršíková, V. (2012). Development of reference materials for the investigation of local mechanical properties at the nanoscale. Surf. Interface Anal, 44(8), pp. 1151-1154. doi: 10.1002/sia.4850
dc.relation/*ref*/Lucca, D. A., Herrmann, and K. & Klopfstein, M. J. (2010). Nanoindentation: Measuring methods and applications. CIRP Ann. - Manuf. Technol, 59(2), pp. 803-819. doi: 10.1016/j.cirp.2010.05.009
dc.relation/*ref*/Xia, Y., Bigerelle, M., Marteau, J., Mazeran, P. E., Bouvier, S. & Lost, A. (2013). Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test. Scanning, 36(1), pp. 134-149. doi: 10.1002/sca.21111
dc.relation/*ref*/Li, Z., Herrmann, K. & Pohlenz, F. (2006). A comparative approach for calibration of the depth measuring system in a nanoindentation instrument. Measurement, 39(6), pp. 547-552. doi: 10.1016/j.measurement.2005.12.010
dc.relation/*ref*/Qiu, W., Li, S.-L., Deng, W.-L., Gao, D. & Kang, Y.-L. (2014). Strain sensor of carbon nanotubes in microscale: from model to metrology. The Scientific World Journal, 2014, pp. 1-9. doi: 10.1155/2014/406154
dc.relation/*ref*/Dai, L., Wang, P. & Bosnicka, K. (2009). Large scale production and metrology of vertically aligned carbon nanotube films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 27(4), pp.1071-1075. doi: 10.1116/1.3148827
dc.relation/*ref*/Wood, J. (2004). Nanotubes light up the home. Materials Today, 7(9), p. 11. doi: 10.1016/s1369-7021(04)00383-9
dc.relation/*ref*/Upadhyayula, V. K. K., Ghoshroy, S., Nair, V. S., Smith, G. B., Mitchell, M. C. & Deng, S., (2008). Single Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems. Research Letters in Nanotechnology, 2008, pp. 1-5. doi: 10.1155/2008/156358
dc.relation/*ref*/Li, L., Hong, M., Schmidt, M., Zhong, M., Malshe, A., Huis in’tVeld, B. & Kovalenko, V. (2011). Laser nano manufacturing – State of the art and challenges. CIRP Ann. - Manuf. Technol, 60(2), pp. 735-755. doi: 10.1016/j.cirp.2011.05.005
dc.relation/*ref*/Demircioglu, P. (2014). Estimation of surface topography for dental implants using advanced metrological technology and digital image processing techniques. Measurement, 48, pp. 43-53. doi: 10.1016/j.measurement.2013.10.036
dc.relation/*ref*/Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. (2015). Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials, 31(1), pp. 37-52. doi: 10.1016/j.dental.2014.10.007
dc.relation/*ref*/Kaur, A., Kaur, M. A. & Shahi, M. N. (2012). How nanotechnology works in medicine. International Journal of Electronics and Computer Science Engineering, 1(4), pp. 2452-2459.
dc.relation/*ref*/Chakarvarty, G. (2013). Nanoparticles & Nanotechnology: Clinical, Toxicological, Social, Regulatory & other aspects of Nanotechnology. Journal of Drug Delivery and Therapeutics, 3(4), pp. 138-141.
dc.relation/*ref*/Sousa, C., Sequeira, D., Kolen’ko, Y. V, Pinto, I. M. & Petrovykh, D. Y. (2015). Analytical Protocols for Separation and Electron Microscopy of Nanoparticles Interacting with Bacterial Cells. Analytical Chemistry, 87(9), pp. 4641-4648. doi: 10.1021/ac503835a
dc.relation/*ref*/Wohlleben, W. (2012). Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas. J. Nanoparticle Res, 14(12), pp. 1-18. doi: 10.1007/s11051-012-1300-z
dc.relation/*ref*/Braun, A., Kestens, V., Franks, K., Roebben, G., Lamberty, A. & Linsinger, T. (2012). A new certified reference material for size analysis of nanoparticles. J. Nanoparticle Res, 14(9), pp. 1-12. doi: 10.1007/s11051-012-1021-3
dc.relation/*ref*/Calzolai, L., Gilliland, D. & Rossi, F. (2012). Measuring nanoparticles size distribution in food and consumer products: a review. Food Additives & Contaminants: Part A, 29(8), pp. 1183-1193. doi: 10.1080/19440049.2012.689777
dc.relation/*ref*/Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), pp. 239-253. doi: 10.1093/toxsci/kfm240
dc.relation/*ref*/Mihindukulasuriya, S. D. F. & Lim, L.-T. (2014). Nanotechnology development in food packaging: A review. Trends Food Sci. Technol, 40(2), pp. 149-167. doi: 10.1016/j.tifs.2014.09.009
dc.relation/*ref*/Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T. & Campbell, K. (2014). Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends Food Sci. Technol, 40(2), pp. 226-241. doi: 10.1016/j.tifs.2014.09.007
dc.relation/*ref*/Rossi, M., Cubadda, F., Dini, L., Terranova, M. L., Aureli, F., Sorbo, A. & Passeri, D. (2014). Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol, 40(2), pp. 127-148. doi: 10.1016/j.tifs.2014.09.004
dc.relation/*ref*/Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L. H. S., Jensen, E., Wierzbicki, R., Boxall, A. B. A. & Molhave, K. (2011). Characterization of nanomaterials in food by electron microscopy. Trac Trends Anal. Chem, 30(1), pp. 28-43. doi: 10.1016/j.trac.2010.10.007
dc.relation/*ref*/Linsinger, T. P. J., Chaudhry, Q., Dehalu, V., Delahaut, P., Dudkiewicz, A., Grombe, R., von der Kammer, F., Larsen, E. H., Legros, S., Loeschner, K., Peters, R., Ramsch, R., Roebben, G., Tiede, K. & Weigel, S. (2013). Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chemistry, 138(2-3), pp. 1959-66. doi: 10.1016/j.foodchem.2012.11.074
dc.relation/*ref*/Dudkiewicz, A., Boxall, A. B. A., Chaudhry, Q., Mølhave, K., Tiede, K., Hofmann, P. & Linsinger, T. P. J. (2015). Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chemistry, 176, pp. 472-479. doi: 10.1016/j.foodchem.2014.12.071
dc.relation/*ref*/Grombe, R., Charoud Got, J., Emteborg, H., Linsinger, T. P. J., Seghers, J., Wagner, S., von der Kammer, F., Hofmann, T., Dudkiewicz, A., Llinás, M., Solans, C., Lehner, A. & Allmaier, G. (2014). Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal. Bioanal. Chem, 406(16), pp. 3895-3907. doi: 10.1007/s00216-013-7554-1
dc.relation/*ref*/Henao-Duque, S. M. (2010). Nanotecnología. J. Cienc. e Ing., 2(2), pp. 7-14.
dc.relation/*ref*/Zuluaga-Vidal, D. (2007). Informe de vigilancia tecnológica: métodos de fabricación de nanotecnología. Bogotá. Colciencias, pp. 33-92.
dc.relation/*ref*/Pontificia Universidad Javeriana. (2016). Nanociencia y Nanotecnología. En: http://ingenieria.javeriana.edu.co/investigacion/grupos-investigacion/naciencia-natecno (26 febrero de 2016).
dc.relation/*ref*/Colciencias. Plataforma ScienTI-Colombia Colciencias. (2016). En: http://www.colciencias.gov.co/scienti (11 mayo del 2016).
dc.relation/*ref*/Ruta N. Ruta N nanotecnología. En: http://rutanmedellin.org/es/noticias/tag/nanotecnolog%C3%ADa (11 de mayo de 2016).
dc.relation/*ref*/Méndez-Naranjo, K. C., Caicedo Palacios, M. L., Bedoya Correa, S. M., Ríos Mesa, A., Zuluaga Gallego, R. & Giraldo Ramírez, D. P. (2014). Tendencias investigativas de la nanotecnología en empaques y envases para alimentos. Rev. Lasallista Investig, 11(2), pp. 18-28.
dc.relation/*ref*/Manrique, H. (2009). Aplicación de nanotecnología en la industria textil colombiana. Revista Virtual Pro, 11(2), pp. 18-28.
dc.relation/*ref*/Rednano Colombia. (2014). Gaceta Informativa, Vol 1. En: http://rednanocolombia.org/gaceta04.htm (26 febrero de 2016).
dc.relation/*ref*/Rednano Colombia. (2015). Gaceta Informativa, Vol 2. En: http://rednanocolombia.org/gaceta1 03.htm (26 febrero de 2016).
dc.rightsDerechos de autor 2016 Ciencia e Ingeniería Neogranadina
dc.sourceCiencia e Ingenieria Neogranadina; Vol. 26 No. 2 (2016); 49-72
dc.sourceCiencia e Ingeniería Neogranadina; Vol. 26 Núm. 2 (2016); 49-72
dc.sourceCiencia e Ingeniería Neogranadina; v. 26 n. 2 (2016); 49-72
dc.source1909-7735
dc.source0124-8170
dc.subjectNanometrology
dc.subjectnanotechnology
dc.subjectnanomanufacturing
dc.subjectmeasurement
dc.subjectNanometrología
dc.subjectnanotecnología
dc.subjectnanomanufactura
dc.subjectmedición
dc.titleNanometrology: Impact on production systems
dc.titleNanometrología: Impacto en los sistemas de producción
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución