dc.contributorRueda Bayona, Juan Gabriel
dc.creatorGil Muñoz, Laura Valentina
dc.date.accessioned2021-08-27T22:23:26Z
dc.date.accessioned2022-09-28T21:07:44Z
dc.date.available2021-08-27T22:23:26Z
dc.date.available2022-09-28T21:07:44Z
dc.date.created2021-08-27T22:23:26Z
dc.date.issued2021-02-18
dc.identifierhttp://hdl.handle.net/10654/38572
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3741181
dc.description.abstractEl alto desarrollo de la industria offshore para apoyar nuevos proyectos de energía marina y renovable requiere una mejora constante de los métodos para el diseño de estructuras. Debido a que estudios recientes advirtieron que las cargas ambientales máximas ocurren durante estados de mar bajo y no durante estados de mar extremos como recomiendan los estándares de alta mar (por ejemplo, RP 2AWSD-2014), este estudio utilizó datos medidos de olas y corrientes para la validación. Se seleccionó la costa del Caribe colombiano como el área de estudio, y se utilizaron datos ADCP in situ combinados con Reanálisis y datos numéricos para identificar los estados del mar adecuados para el análisis. Luego, se seleccionaron 2 estados del mar bajo y 1 extremo y se extrajeron sus perfiles de corriente asociados, para proporcionar datos de entrada para las simulaciones CFD FEA y evaluar el efecto de las fuerzas hidrodinámicas sobre una estructura costa afuera. Los resultados mostraron que los perfiles de corriente durante los estados de baja mar generaron las máximas respuestas estructurales, lo que evidenció que las bajas alturas de las olas, combinadas con bajas velocidades del viento durante la marea refluida, producían las máximas fuerzas hidrodinámicas.
dc.languagespa
dc.publisherIngeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relationAlvarez-Silva, O., Osorio, A.F., 2014. Salinity gradient energy potential in Colombia considering site specific constraints. Renew. Energy 74, 737–748. https://doi.org/10.1016/j.renene.2014.08.074
dc.relationAPI, 2011. API RP 2FPS: Recommended practice for planning, designing, and constructing floating production systems, 2nd ed.
dc.relationAPI, 2007a. API BULL 2INT-DG: Interim Guidance for Design of Offshore Structures for Hurricane Conditions.
dc.relationAPI, 2007b. Recommended Practice for Planning , Designing and Constructing Fixed Offshore Platforms — Working Stress Design. Api Recomm. Pract. 24-WSD, 242. https://doi.org/10.1007/s13398-014-0173- 7.2
dc.relationAPI, 2001. Recommended Practice for Design and Hazards Analysis for Offshore Production Facilities. Api Recomm. Pract. 14J (Rp 14J).
dc.relationBarooni, M., Ale Ali, N., Ashuri, T., 2018. An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines. Energy 154, 442–454. https://doi.org/10.1016/j.energy.2018.04.163
dc.relationBritish Standard, 2015. BS ISO 29400:2015: Ships and marine technology. Offshore wind energy. Port and marine operations.
dc.relationBritish Standard, 2008. BS EN ISO 19902:2007+A1:2013: Petroleum and natural gas industries. Fixed steel offshore structures, 1st ed.
dc.relationBruinsma, N., Paulsen, B.T., Jacobsen, N.G., 2018. Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines. Ocean Eng. 147, 647–658. https://doi.org/10.1016/j.oceaneng.2017.09.054
dc.relationChakrabarti, S.K., 2005. Handbook of offshore engineering, 1st ed.
dc.relationChen, L., Basu, B., Nielsen, S.R.K., 2018. A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis. Ocean Eng. 162, 304–315.
dc.relationChuang, Z., Liu, S., Lu, Y., 2020. Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine. Int. J. Nav. Archit. Ocean Eng. 1–9
dc.relationDai, J., Hu, W., Yang, X., Yang, S., 2018. Modeling and investigation of load and motion characteristics of offshore floating wind turbines. Ocean Eng. 159, 187–200.
dc.relationInternational Electrotechnical Commission, 2009. IEC 61400-3 Ed. 1.0 b:2009: Wind turbines - Part 3: Design requirements for offshore wind turbines
dc.relationInternational Organization for Standardization, 2015. ISO 19901-1:2015: Petroleum and natural gas industries - Specific requirements for offshore structures - Part 1: Metocean design and operating considerations.
dc.relationInternational Organization for Standardization, 2013. ISO 19900:2013: Petroleum and natural gas industries - General requirements for offshore structures. International Organization for Standardization
dc.relationIshihara, T., Zhang, S., 2019. Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison’s equation with frequency dependent hydrodynamic coefficients. Renew. Energy 131, 1186–1207.
dc.relationJournée, J.M.J., Massie, W.W., 2002. Offshore Hydromechanics, Electrochimica Acta
dc.relationKim, J., Shin, H., 2020. Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II. Int. J. Nav. Archit. Ocean Eng. 12, 213–225.
dc.relationLi, Y., Zhu, Q., Liu, L., Tang, Y., 2018. Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines. Renew.
dc.relationManikandan, R., Saha, N., 2019. Dynamic modelling and non-linear control of TLP supported offshore wind turbine under environmental loads. Mar. Struct. 64, 263–294.
dc.relationNOAA, 2016. NCEP North American Regional Reanalysis: NARR [WWW Document]
dc.relationNORSOK, 2017. NORSOK N-003:2017: Actions and actions effects, 3rd ed. Norway
dc.relationNORSOK, 2017. NORSOK N-003:2017: Actions and actions effects, 3rd ed. Norway
dc.relationPham, T.D., Shin, H., 2019. Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I.
dc.relationRestrepo, J.D., López, S.A., 2008. Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. J. South Am. Earth Sci.
dc.relationRueda-Bayona, J G, 2017. Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore. Universidad del Norte
dc.relationRueda-Bayona, Juan Gabriel, 2017. Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras Offshore (PhD Thesis). Universidad del Norte, Barranquilla, Colombia
dc.relationRueda-Bayona, J.G., Guzmán, A., 2020. Genetic algorithms to solve the jonswap spectra for offshore structure designing, in: Proceedings of the Annual Offshore Technology Conference
dc.relationRueda-Bayona, J.G., Guzmán, A., Cabello Eras, J.J., 2020a. Selection of JONSWAP Spectra Parameters during Water-Depth and Sea-State Transitions. J. Waterw. Port, Coast. Ocean Eng. 6, 14.
dc.relationRueda-Bayona, J.G., Guzmán, A., Cabello, J.J., 2020b. Selection of JONSWAP Spectra Parameters for Water Depth ans Sea-State Transitions. J. Waterw. Port, Coastal, Ocean En
dc.relationRueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., Silva-Casarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J., 2019a. Renewables energies in Colombia and the opportunity for the offshore wind technology. J. Clean
dc.relationRueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., Silva-Casarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J., 2019a. Renewables energies in Colombia and the opportunity for the offshore wind technology. J. Clean
dc.relationRueda-Bayona, J.G., Guzmán, A., Silva, R., 2020c. Genetic algorithms to determine JONSWAP spectra parameters. Ocean Dyn.
dc.relationRueda-Bayona, J.G., Guzmán, A., Silva, R., 2020d. Genetic algorithms to determine JONSWAP spectra parameters. Ocean Dyn.
dc.relationRueda-Bayona, J.G., Horrillo-Caraballo, J., Chaparro, T.R., 2020e. Modelling of surface river plume using set up and input data files of Delft-3D model. Data Br
dc.relationRueda-Bayona, J.G., Osorio-Arias, A.F., Guzmán, A., Rivillas-Ospina, G., 2019b. Alternative method to determine extreme hydrodynamic forces with data limitations for offshore engineering. J. Waterw. Port, Coast. Ocean Eng. 145.
dc.relationSant, T., Buhagiar, D., Farrugia, R.N., 2018. Evaluating a new concept to integrate compressed air energy storage in spar-type floating offshore wind turbine structures. Ocean Eng. 166, 232–241.
dc.relationSarkar, S., Chen, L., Fitzgerald, B., Basu, B., 2020. Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines including wave-current interactions. J. Sound Vib. 470, 115170.
dc.relationSarpkaya, T., 1993. Offshore Hydrodynamics. ASME J. Offshore Mech. Artic Eng. 115, 2–5.
dc.relationTian, Y., Gaudin, C., Randolph, M.F., Cassidy, M.J., Peng, B., 2018. Numerical investigation of diving potential and optimization of offshore anchors. J. Geotech. Geoenvironmental Eng. 144, 1–9.
dc.relationYue, M., Liu, Q., Li, C., Ding, Q., Cheng, S., Zhu, H., 2020. Effects of heave plate on dynamic response of floating wind turbine Spar platform under the coupling effect of wind and wave. Ocean Eng. 201, 107103.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.titleFuerzas hidrodinámicas extremas sobre una base flotante generadas por el estado del mar bajo: un caso de estudio de modelado CFD-FEA


Este ítem pertenece a la siguiente institución