dc.contributor | Rodríguez C., Adela Tatiana | |
dc.contributor | Arias, Carlos Alberto | |
dc.creator | Fuentes Escobar, Karol Lucia | |
dc.date.accessioned | 2021-12-27T23:35:29Z | |
dc.date.accessioned | 2022-09-28T20:51:31Z | |
dc.date.available | 2021-12-27T23:35:29Z | |
dc.date.available | 2022-09-28T20:51:31Z | |
dc.date.created | 2021-12-27T23:35:29Z | |
dc.date.issued | 2021-09-25 | |
dc.identifier | http://hdl.handle.net/10654/39759 | |
dc.identifier | instname:Universidad Militar Nueva Granada | |
dc.identifier | reponame:Repositorio Institucional Universidad Militar Nueva Granada | |
dc.identifier | repourl:https://repository.unimilitar.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3736051 | |
dc.description.abstract | De acuerdo con la Agencia Internacional de Energía IEA (2021) la innovación en materia tecnológica en el ámbito energético es necesaria para alcanzar los objetivos de mitigación del cambio climático, respaldando al mismo tiempo los objetivos del desarrollo sostenible. Recientemente la producción de biohidrógeno a partir de diferentes residuos orgánicos se ha convertido en una alternativa de bajo costo y eco-amigable. | |
dc.language | spa | |
dc.publisher | Maestría en Ingeniería Civil | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Universidad Militar Nueva Granada | |
dc.relation | (IPCC), T. I. P. on C. C. (2020). Emissions Gap Emissions Gap Report 2020. Abdullah, M. F., Md Jahim, J., Abdul, P. M., & Mahmod, S. S. (2020). Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME). Biocatalysis and Agricultural Biotechnology, 23(September 2019), 101445. https://doi.org/10.1016/j.bcab.2019.101445 | |
dc.relation | Ahmed, Y., Yaakob, Z., Akhtar, P., & Sopian, K. (2015). Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renewable and Sustainable Energy Reviews, 42, 1260–1278. https://doi.org/10.1016/j.rser.2014.10.073 | |
dc.relation | Ait Hsine, E., Benhammou, A., & Pons, M. N. (2005a). Water resources management in soft drink industry-water use and wastewater generation. Environmental Technology, 26(12), 1309–1316. https://doi.org/10.1080/09593332608618605 | |
dc.relation | Ait Hsine, E., Benhammou, A., & Pons, M. N. (2005b). Water resources management in soft drink industry-water use and wastewater generation. Environmental Technology, 26(12), 1309–1316. https://doi.org/10.1080/09593332608618605 | |
dc.relation | Akhlaghi, N., & Najafpour-darzi, G. (2020). ScienceDirect A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy, 45(43), 22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182 | |
dc.relation | Algapani, D. E., Qiao, W., Ricci, M., Bianchi, D., M. Wandera, S., Adani, F., & Dong, R. (2019). Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy, 130, 1108–1115. https://doi.org/10.1016/j.renene.2018.08.079 | |
dc.relation | Algapani, D. E., Qiao, W., Su, M., di Pumpo, F., Wandera, S. M., Adani, F., & Dong, R. (2016). Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process. Bioresource Technology, 216(June), 768–777. https://doi.org/10.1016/j.biortech.2016.06.016 | |
dc.relation | Ali, R., Saravia, F., Hille-Reichel, A., Gescher, J., & Horn, H. (2021). Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. Bioresource Technology, 319(July 2020), 124166. | |
dc.relation | Ali, Y., Fraidoon, F., Issakhov, A., Selim, M. M., & Li, Z. (2021). Optimization analysis of hydrogen production using ammonia decomposition. 335. https://doi.org/10.1016/j.molliq.2021.116190 | |
dc.relation | Andrew, E., Nakhla, G., & Haroun, B. M. (2019). ScienceDirect Co-fermentation of carbohydrates and proteins for biohydrogen production : Statistical optimization using Response Surface Methodology. International Journal of Hydrogen Energy, 45(4), 2640–2654. https://doi.org/10.1016/j.ijhydene.2019.11.160 | |
dc.relation | APHA (American Public Health Association). (2012). Standard Methods for examination of water and wastewater,” 22nd ed. Washington: American Public Health Association (22th ed.). | |
dc.relation | Arashiro, L. T., Ferrer, I., Rousseau, D. P. L., Van Hulle, S. W. H., & Garfí, M. (2019). The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresource Technology, 280(January), 27–36. https://doi.org/10.1016/j.biortech.2019.01.096 | |
dc.relation | Atasoy, M., Eyice, O., Schnürer, A., & Cetecioglu, Z. (2019). Bioresource Technology Volatile fatty acids production via mixed culture fermentation : Revealing the link between pH , inoculum type and bacterial composition. Bioresource Technology, 292(July), 121889. https://doi.org/10.1016/j.biortech.2019.121889 | |
dc.relation | Bao, M. D., Su, H. J., & Tan, T. W. (2013). Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel, 112, 38–44. https://doi.org/10.1016/j.fuel.2013.04.063 | |
dc.relation | Barca, C., Soric, A., Ranava, D., Giudici-orticoni, M., & Ferrasse, J. (2015). Bioresource Technology Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater : A review. Bioresource Technology, 185, 386–398. https://doi.org/10.1016/j.biortech.2015.02.063 | |
dc.relation | Boguniewicz-Zabłocka, J., Capodaglio, A. G., & Vogel, D. (2017). Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry. E3S Web of Conferences, 19. https://doi.org/10.1051/e3sconf/20171902014 | |
dc.relation | Boshagh, F. (2021). ScienceDirect Measurement methods of carbohydrates in dark fermentative hydrogen production- A review. International Journal of Hydrogen 54 Energy, 46(47), 24028–24050. https://doi.org/10.1016/j.ijhydene.2021.04.204 | |
dc.relation | Bruns, R. E., & Scarminio, I. S. (2006). Statistical design — Chemometrics (S. Rutan & W. B (eds.); Volume 25). Data Handling in Science and Techonology. | |
dc.relation | Cai, M., Luo, G., Li, J., Li, W., Li, Y., & Li, A. (2021). Chemosphere Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Chemosphere, 280(April), 130937. https://doi.org/10.1016/j.chemosphere.2021.130937 | |
dc.relation | Castelló, E., Nunes Ferraz-Junior, A. D., Andreani, C., Anzola-Rojas, M. del P., Borzacconi, L., Buitrón, G., Carrillo-Reyes, J., Gomes, S. D., Maintinguer, S. I., Moreno-Andrade, I., Palomo-Briones, R., Razo-Flores, E., Schiappacasse-Dasati, M., Tapia-Venegas, E., Valdez-Vázquez, I., Vesga-Baron, A., Zaiat, M., & Etchebehere, C. (2020). Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions. Renewable and Sustainable Energy Reviews, 119(May). https://doi.org/10.1016/j.rser.2019.109602 | |
dc.relation | Chaikitkaew, S., Kongjan, P., & O-Thong, S. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. In Energy Procedia (Vol. 79). Elsevier B.V. https://doi.org/10.1016/j.egypro.2015.11.575 Chen, J., Liu, Y., Liu, K., Hu, L., Yang, J., Wang, X., Song, Z. ling, Yang, Y., Tang, M., & Wang, R. (2021a). Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment. Bioresource Technology, 331(February), 125027. https://doi.org/10.1016/j.biortech.2021.125027 | |
dc.relation | Chen, J., Liu, Y., Liu, K., Hu, L., Yang, J., Wang, X., Song, Z. ling, Yang, Y., Tang, M., & Wang, R. (2021b). Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment. Bioresource Technology, 331(March), 125027. https://doi.org/10.1016/j.biortech.2021.125027 | |
dc.relation | Chen, P. T., Hong, Z. S., Cheng, C. L., Ng, I. S., Lo, Y. C., Nagarajan, D., & Chang, J. S. (2020). Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 308(March), 123266. https://doi.org/10.1016/j.biortech.2020.123266 | |
dc.relation | Chen, Yang, Yin, Y., & Wang, J. (2021). Recent advance in inhibition of dark fermentative 55 hydrogen production. International Journal of Hydrogen Energy, 46(7), 5053–5073. https://doi.org/10.1016/j.ijhydene.2020.11.096 | |
dc.relation | Chen, Yinguang, Li, X., Zheng, X., & Wang, D. (2012). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47(2), 615–622. https://doi.org/10.1016/j.watres.2012.10.035 | |
dc.relation | Cieciura-Włoch, W., Borowski, S., & Domański, J. (2020). Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresource Technology, 314(April). https://doi.org/10.1016/j.biortech.2020.123713 | |
dc.relation | Feng, K., Wang, Q., Li, H., Zhang, Y., Deng, Z., Liu, J., & Du, X. (2020). Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renewable Energy, 154, 385–393. https://doi.org/10.1016/j.renene.2020.03.051 | |
dc.relation | Fonseca, B. C., Bortolucci, J., Marques, T., Fabiano, V., Gouvêa, P. F. De, Dinamarco, T. M., & Reginatto, V. (2020). Bioresource Technology Reports Butyric acid as sole product from xylose fermentation by a non- solventogenic Clostridium beijerinckii strain under controlled pH and nutritional conditions. Bioresource Technology Reports, 10(April), 100426. https://doi.org/10.1016/j.biteb.2020.100426 | |
dc.relation | Fritsch, M., Hartmeier, W., & Chang, J. S. (2008). Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings. International Journal of Hydrogen Energy, 33(22), 6549–6557. https://doi.org/10.1016/j.ijhydene.2008.07.070 | |
dc.relation | Fuess, L. T., Kiyuna, L. S. M., Ferraz, A. D. N., Persinoti, G. F., Squina, F. M., Garcia, M. L., & Zaiat, M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, 189, 480–491. https://doi.org/10.1016/j.apenergy.2016.12.071 | |
dc.relation | Garg, M. (2019). Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. 91–115. https://doi.org/10.1007/978-981-13-1468-1 | |
dc.relation | Gomes, A., Paranhos, D. O., & Silva, E. L. (2020). Biomass and Bioenergy Statistical optimization of H 2 , 1 , 3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor : Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(April 2019), 105575. https://doi.org/10.1016/j.biombioe.2020.105575 | |
dc.relation | Gopalakrishnan, B., Khanna, N., & Das, D. (2019). Dark-Fermentative Biohydrogen 57 Production. In Biohydrogen. https://doi.org/10.1016/b978-0-444-64203-5.00004-6 | |
dc.relation | Gunes, B., Stokes, J., Davis, P., Connolly, C., & Lawler, J. (2021). Optimisation of anaerobic digestion of pot ale after thermochemical pre-treatment through Response Surface Methodology. Biomass and Bioenergy, 144(November 2020), 105902. https://doi.org/10.1016/j.biombioe.2020.105902 | |
dc.relation | Han, G., Shin, S. G., Lee, J., Shin, J., & Hwang, S. (2017). A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresource Technology, 245(June), 869–875. https://doi.org/10.1016/j.biortech.2017.08.167 | |
dc.relation | Hashemi, S. E., Sarker, S., Lien, K. M., Schnell, S. K., & Austbø, B. (2019). Cryogenic vs. absorption biogas upgrading in liquefied biomethane production – An energy efficiency analysis. Fuel, 245(January), 294–304. https://doi.org/10.1016/j.fuel.2019.01.172 | |
dc.relation | Hernández, D. M., Andrea, L., & Rodríguez-chaparro, A. T. (2018). Hydrogen production in a novel configuration of UASB reactor under different hydraulic retention time • Producción de hidrógeno utilizando una nueva configuración de reactor anaerobio UASB bajo diferentes tiempos de retención hidráulica. 85(205), 157–162. | |
dc.relation | Huang, Y., Ma, Y., Wan, J., & Wang, Y. (2019). Mathematical modelling of the internal circulation anaerobic reactor by Anaerobic Digestion Model No . 1 , simultaneously combined with hydrodynamics. Scientific Reports, July 2018, 1–13. https://doi.org/10.1038/s41598-019-42755-0 | |
dc.relation | Instituto de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2007). Protocolo para el monitoreo y seguimiento del agua. | |
dc.relation | Irizar, I., Roche, E., Beltrán, S., Aymerich, E., & Esteban-Gutiérrez, M. (2018). Model-based design of a software sensor for real-time diagnosis of the stability conditions in high-rate anaerobic reactors – Full-scale application to Internal Circulation technology. Water Research, 143, 479–491. https://doi.org/10.1016/j.watres.2018.06.055 | |
dc.relation | Isla, M. A., Comelli, R. N., & Seluy, L. G. (2013b). Wastewater from the soft drinks industry as a source for bioethanol production. Bioresource Technology, 136, 140–147. https://doi.org/10.1016/j.biortech.2013.02.089 | |
dc.relation | Jiang, D., Ge, X., Zhang, T., Chen, Z., Zhang, Z., He, C., Zhang, Q., & Li, Y. (2020). Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)2. Bioresource Technology, 304(December 2019), 123001. https://doi.org/10.1016/j.biortech.2020.123001 | |
dc.relation | Jiang, Y., Dennehy, C., Lawlor, P. G., Hu, Z., McCabe, M., Cormican, P., Zhan, X., & Gardiner, G. E. (2018). Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Waste Management, 79, 302–311. https://doi.org/10.1016/j.wasman.2018.07.049 | |
dc.relation | Karapinar, I., Gokfiliz Yildiz, P., Pamuk, R. T., & Karaosmanoglu Gorgec, F. (2020). The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. International Journal of Hydrogen Energy, 45(5), 3524–3531. https://doi.org/10.1016/j.ijhydene.2018.12.195 | |
dc.relation | Khan, M. A., Ngo, H. H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S. W., Nguyen, D. D., & Wang, J. (2017). Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy, 129. https://doi.org/10.1016/j.renene.2017.04.029 | |
dc.relation | Kim, D. H., Kim, S. H., Jung, K. W., Kim, M. S., & Shin, H. S. (2011). Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresource Technology, 102(18), 8646–8652. https://doi.org/10.1016/j.biortech.2011.03.030 | |
dc.relation | Kovalev, A. A., Kovalev, D. A., Litti, Y. V., & Katraeva, I. V. (2020). Biohydrogen production in the two-stage process of anaerobic bioconversion of organic matter of liquid organic waste with recirculation of digister effluent. International Journal of 59 Hydrogen Energy, 45(51), 26831–26839. https://doi.org/10.1016/j.ijhydene.2020.07.124 | |
dc.relation | Krishna, D., & Kalamdhad, A. S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. Journal of Environmental Chemical Engineering, 2(3), 1821–1830. https://doi.org/10.1016/j.jece.2014.07.024 | |
dc.relation | Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197(117253), 117253. https://doi.org/10.1016/j.energy.2020.117253 | |
dc.relation | Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(April), 877–891. https://doi.org/10.1016/j.rser.2018.03.111 | |
dc.relation | Lay, C. H., Vo, T. P., Lin, P. Y., Abdul, P. M., Liu, C. M., & Lin, C. Y. (2019). Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 44(28), 14351–14361. https://doi.org/10.1016/j.ijhydene.2019.03.165 | |
dc.relation | Li, H., Zhang, Y., Yang, M., & Kamagata, Y. (2013). Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Frontiers of Environmental Science and Engineering in China, 7(1), 43–48. https://doi.org/10.1007/s11783-012-0397-8 | |
dc.relation | Li, X., Guo, L., Liu, Y., Wang, Y., She, Z., Gao, M., & Zhao, Y. (2020). Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. Journal of Environmental Management, 271(January), 111023. https://doi.org/10.1016/j.jenvman.2020.111023 | |
dc.relation | Liu, J., Wang, C., Wu, K., Huang, L., Tang, Z., Zhang, C., Wang, C., Zhao, X., Yin, F., Yang, B., Liu, J., Yang, H., & Zhang, W. (2020). Novel start-up process for the efficient degradation of high COD wastewater with up-flow anaerobic sludge blanket technology and a modified internal circulation reactor. Bioresource Technology, 308(February), 123300. https://doi.org/10.1016/j.biortech.2020.123300 | |
dc.relation | Liu, L., Hong, Z. Y., & Wong, C. H. (2006). Convergent glycopeptide synthesis by traceless staudinger ligation and enzymatic coupling. ChemBioChem, 7(3), 429–432. https://doi.org/10.1002/cbic.200500437 | |
dc.relation | Liu, M., Li, C., Cao, C., Wang, L., Li, X., Che, J., & Yang, H. (2021). Walnut Fruit Processing Equipment : Academic Insights and Perspectives. In Food Engineering Reviews (Issue 0123456789). Springer US. https://doi.org/10.1007/s12393-020-09273-6 | |
dc.relation | Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., & Xing, X. H. (2018). Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. In Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2017.08.014 | |
dc.relation | Lopez, C. A., McNeely, T. P., Nurmakova, K., Beavers, W. N., & Skaar, E. P. (2020). Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe, 63, 102210. https://doi.org/10.1016/j.anaerobe.2020.102210 | |
dc.relation | Lu, J. Y., Wang, X. M., Liu, H. Q., Yu, H. Q., & Li, W. W. (2019). Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environment International, 129(May), 273–278. https://doi.org/10.1016/j.envint.2019.05.057 | |
dc.relation | Luo, G., Li, J., Li, Y., Wang, Z., Li, W., & Li, A. (2016). Bioresource Technology Performance , kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate : Role of external hydraulic circulation. Bioresource Technology, 222, 470–477. https://doi.org/10.1016/j.biortech.2016.10.023 | |
dc.relation | Mahata, C., Ray, S., & Das, D. (2020a). Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management, 219(June), 113047. https://doi.org/10.1016/j.enconman.2020.113047 | |
dc.relation | Mahata, C., Ray, S., & Das, D. (2020b). Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management, 219(April), 113047. https://doi.org/10.1016/j.enconman.2020.113047 | |
dc.relation | Martinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Molina, D., & Soccol, C. R. (2021). Hydrogen production by dark fermentation using a new low-cost culture medium composed of corn steep liquor and cassava processing water: Process optimization and scale-up. Bioresource Technology, 320(October 2020). https://doi.org/10.1016/j.biortech.2020.124370 | |
dc.relation | Mazareli, R. C. da S., Villa Montoya, A. C., Delforno, T. P., Centurion, V. B., de Oliveira, V. M., Silva, E. L., & Varesche, M. B. A. (2021). Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: Optimization of pH and temperature. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2020.12.063 | |
dc.relation | Meky, N., Elreedy, A., Ibrahim, M. G., Fujii, M., & Tawfik, A. (2021). Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents. Energy, 217. 62 https://doi.org/10.1016/j.energy.2020.119326 | |
dc.relation | Meky, N., Ibrahim, M. G., Fujii, M., Elreedy, A., & Tawfik, A. (2020). Integrated dark-photo fermentative hydrogen production from synthetic gelatinaceous wastewater via cost-effective hybrid reactor at ambient temperature. Energy Conversion and Management, 203(August 2019), 112250. https://doi.org/10.1016/j.enconman.2019.112250 | |
dc.relation | Mishra, P., Singh, L., Ab, Z., Krishnan, S., Rana, S., Islam, M. A., Sakinah, M., Ameen, F., & Syed, A. (2018). Photohydrogen production from dark-fermented palm oil mill ef fl uent ( DPOME ) and statistical optimization : Renewable substrate for hydrogen. Journal of Cleaner Production, 199, 11–17. https://doi.org/10.1016/j.jclepro.2018.07.028 | |
dc.relation | Mockaitis, G., Bruant, G., Guiot, S. R., Peixoto, G., Foresti, E., & Zaiat, M. (2020a). Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renewable Energy, 145, 1388–1398. https://doi.org/10.1016/j.renene.2019.06.134 | |
dc.relation | Montoya-Rosales, J. J., Peces, M., González-Rodríguez, L. M., Alatriste-Mondragón, F., & Villa-Gómez, D. K. (2020). A broad overview comparing a fungal, thermal and acid pre-treatment of bean straw in terms of substrate and anaerobic digestion effect. Biomass and Bioenergy, 142(May 2019), 1–8. https://doi.org/10.1016/j.biombioe.2020.105775 | |
dc.relation | Moreno Dávila, I. M. M., Tamayo Ordoñez, M. C., Morales Martínez, T. K., Soria Ortiz, A. I., Gutiérrez Rodríguez, B., Rodríguez de la Garza, J. A., & Ríos González, L. J. (2020). Effect of fermentation time/hydraulic retention time in a UASB reactor for hydrogen production using surface response methodology. International Journal of Hydrogen Energy, 45(26), 13702–13706. https://doi.org/10.1016/j.ijhydene.2019.12.137 | |
dc.relation | Murakami, K. (2020). Time-space network model and MILP formulation of the conflict-free routing problem of a capacitated AGV system. Computers and Industrial Engineering, 141(January 2019), 106270. https://doi.org/10.1016/j.cie.2020.106270 | |
dc.relation | Naaz, S., & Kumar, S. (2021). ScienceDirect Enhancement effect of zero-valent iron nanoparticle and iron oxide nanoparticles on dark fermentative hydrogen production from molasses- based distillery wastewater. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2021.06.125 | |
dc.relation | Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097 Oliveira, M. De, Christe, M., & Sant, A. (2020). Biohydrogen production using xylose | |
dc.relation | Ouyang, E., Lu, Y., Ouyang, J., Wang, L., & Wang, X. (2019). Performance and dynamic characteristics of microbial communities in multi-stage anaerobic reactors treating gibberellin wastewater. Journal of Bioscience and Bioengineering, 127(3), 318–325. https://doi.org/10.1016/j.jbiosc.2018.05.017 | |
dc.relation | Ozyurt, B., Soysal, F., Hitit, Z. Y., Camcioglu, S., Akay, B., & Ertunc, S. (2019). An efficient dark fermentative hydrogen production by GMV control of pH. International Journal of Hydrogen Energy, 44(36), 19709–19718. https://doi.org/10.1016/j.ijhydene.2019.06.048 | |
dc.relation | Paranhos, A. G. de O., & Silva, E. L. (2020). Statistical optimization of H2, 1,3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor: Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(April), 105575. https://doi.org/10.1016/j.biombioe.2020.105575 | |
dc.relation | Parra H., R. A. (2015). Anaerobic digestión: biotechnological mechanisms in waste water treatments and their application in food industry. Producción + Limpia, 10(2), 142–159. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1909-04552015000200014 | |
dc.relation | Peintner, C., Zeidan, A. A., & Schnitzhofer, W. (2010). Bioreactor systems for thermophilic fermentative hydrogen production: Evaluation and comparison of appropriate systems. Journal of Cleaner Production, 18(SUPPL. 1), S15–S22. https://doi.org/10.1016/j.jclepro.2010.06.013 | |
dc.relation | Peixoto, G., Saavedra, N. K., Varesche, M. B. A., & Zaiat, M. (2011). Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. International Journal of Hydrogen Energy, 36(15), 8953–8966. https://doi.org/10.1016/j.ijhydene.2011.05.014 | |
dc.relation | Petropoulos, E., Cuff, G., Huete, E., Garcia, G., Wade, M., Spera, D., Aloisio, L., Rochard, J., Torres, A., & Weichgrebe, D. (2016). Investigating the feasibility and the limits of high rate anaerobic winery wastewater treatment using a hybrid-EGSB bio-reactor. Process Safety and Environmental Protection, 102, 107–118. https://doi.org/10.1016/j.psep.2016.02.015 | |
dc.relation | Petta, L., De Gisi, S., Casella, P., Farina, R., & Notarnicola, M. (2017). Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption. Journal of Environmental Management, 201, 177–189. https://doi.org/10.1016/j.jenvman.2017.06.042 | |
dc.relation | Pu, Y., Tang, J., Wang, X. C., Hu, Y., Huang, J., Zeng, Y., Ngo, H. H., & Li, Y. (2019). Hydrogen production from acidogenic food waste fermentation using untreated inoculum: Effect of substrate concentrations. International Journal of Hydrogen Energy, 44(50), 27272–27284. https://doi.org/10.1016/j.ijhydene.2019.08.230 | |
dc.relation | Rajesh Banu, J., Ginni, G., Kavitha, S., Yukesh Kannah, R., Adish Kumar, S., Bhatia, S. K., & Kumar, G. (2021). Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresource Technology, 319(October 2020), 124241. https://doi.org/10.1016/j.biortech.2020.124241 | |
dc.relation | Rao, R., & Basak, N. (2021). Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. International Journal of Hydrogen Energy, 46(2), 1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142 | |
dc.relation | Remya, N., & Swain, A. (2019). Soft drink industry wastewater treatment in microwave photocatalytic system – Exploration of removal efficiency and degradation mechanism. Separation and Purification Technology, 210(August 2018), 600–607. https://doi.org/10.1016/j.seppur.2018.08.051 | |
dc.relation | Ri, P. C., Kim, J. S., Kim, T. R., Pang, C. H., Mun, H. G., Pak, G. C., & Ren, N. Q. (2019). Effect of hydraulic retention time on the hydrogen production in a horizontal and vertical continuous stirred-tank reactor. International Journal of Hydrogen Energy, 44(33), 17742–17749. https://doi.org/10.1016/j.ijhydene.2019.05.136 | |
dc.relation | Sabrina, H., Yahya, M., Abbas, T., Aishah, N., & Amin, S. (2020). ScienceDirect Optimization of hydrogen production via toluene steam reforming over Ni e Co supported modified- activated carbon using ANN coupled GA and RSM. International Journal of Hydrogen Energy, 46(48), 24632–24651. https://doi.org/10.1016/j.ijhydene.2020.05.033 | |
dc.relation | Shanmugam, S. R., Chaganti, S. R., Lalman, J. A., & Heath, D. D. (2014). Statistical optimization of conditions for minimum H2 consumption in mixed anaerobic cultures: Effect on homoacetogenesis and methanogenesis. International Journal of Hydrogen Energy, 39(28), 15433–15445. https://doi.org/10.1016/j.ijhydene.2014.07.143 | |
dc.relation | Shi, X., Zuo, J., Li, B., & Yu, H. (2020). Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community. Bioresource Technology, 297(September 2019), 122458. https://doi.org/10.1016/j.biortech.2019.122458 | |
dc.relation | Si, B., Liu, Z., Zhang, Y., Li, J., Shen, R., Zhu, Z., & Xing, X. (2016). Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. International Journal of Hydrogen Energy, 41(7), 4429–4438. https://doi.org/10.1016/j.ijhydene.2015.06.045 | |
dc.relation | Silva-Illanes, F., Tapia-Venegas, E., Schiappacasse, M. C., Trably, E., & Ruiz-Filippi, G. (2017). Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy, 141, 358–367. https://doi.org/10.1016/j.energy.2017.09.073 | |
dc.relation | Sinharoy, A., Kumar, M., & Pakshirajan, K. (2020). An overview of bioreactor configurations and operational strategies for dark fermentative biohydrogen production. In Bioreactors (Issue x). INC. https://doi.org/10.1016/b978-0-12-821264-6.00014-0 | |
dc.relation | Sivaramakrishnan, R., Shanmugam, S., Sekar, M., Mathimani, T., Incharoensakdi, A., Kim, S. H., Parthiban, A., Edwin Geo, V., Brindhadevi, K., & Pugazhendhi, A. (2021). Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel, 291(December 2020), 120136. https://doi.org/10.1016/j.fuel.2021.120136 | |
dc.relation | Srisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2020). Critical considerations in two-stage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 119(November 2019). https://doi.org/10.1016/j.rser.2019.109587 | |
dc.relation | Sunyoto, N. M. S., Sugiarto, Y., & Zhu, M. (2019). ScienceDirect Transient performance during start-up of a two- phase anaerobic digestion process demonstration unit treating carbohydrate-rich waste with biochar addition. International Journal of Hydrogen Energy, 44(28), 14341–14350. https://doi.org/10.1016/j.ijhydene.2019.04.037 | |
dc.relation | Tarelho, C., Alavi-borazjani, S. A., & Capela, M. I. (2021). ScienceDirect Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. 6, 2–12. https://doi.org/10.1016/j.ijhydene.2021.04.017 | |
dc.relation | Taylor, P., Li, C., & Fang, H. H. P. (2007). Critical Reviews in Environmental Science and Technology Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures. August 2013, 37–41. https://doi.org/10.1080/10643380600729071 | |
dc.relation | Teófilo, R. F. (2006). Quimiometria ii: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial Reinaldo F. Teófilo e Márcia M. C. Ferreira*. 29(2), 338–350. | |
dc.relation | Ufrgs, I. P. H. (2020). Hydrogen production potential comparison of sucrose and crude glycerol using different inoculums sources Maria Cristina de Almeida Silva * and. 25(4), 395–408. | |
dc.relation | Van Niel, E. W. J., Budde, M. A. W., De Haas, G., Van der Wal, F. J., Claassen, P. A. M., & Stams, A. J. M. (2002). Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy, 27(11–12), 1391–1398. https://doi.org/10.1016/S0360-3199(02)00115-5 | |
dc.relation | Wainaina, S., Awasthi, M. K., Horváth, I. S., & Taherzadeh, M. J. (2020). Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy, 152, 1140–1148. https://doi.org/10.1016/j.renene.2020.01.138 | |
dc.relation | Wang, B., Li, Y., & Ren, N. (2013). Biohydrogen from molasses with ethanol-type fermentation : Effect of hydraulic retention time. International Journal of Hydrogen 68 Energy, 38(11), 4361–4367. https://doi.org/10.1016/j.ijhydene.2013.01.120 | |
dc.relation | Wang, D., Yi, N., Wang, Y., Yang, J., Fu, Q., Liu, X., Yang, Q., Cai, Z., Ye, J., Liu, Y., Wang, Q., & Ni, B. J. (2021). Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production. Chemical Engineering Journal, 421(P1), 129948. https://doi.org/10.1016/j.cej.2021.129948 | |
dc.relation | Wang, T. T., Wang, S. P., Zhong, X. Z., Sun, Z. Y., Huang, Y. L., Tan, L., Tang, Y. Q., & Kida, K. (2017). Converting digested residue eluted from dry anaerobic digestion of distilled grain waste into value-added fertilizer by aerobic composting. Journal of Cleaner Production, 166, 530–536. https://doi.org/10.1016/j.jclepro.2017.08.075 | |
dc.relation | Wei, W., Wu, L., Liu, X., Chen, Z., Hao, Q., Wang, D., Liu, Y., Peng, L., & Ni, B.-J. (2020a). How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge? Science of The Total Environment, 713, 136594. https://doi.org/10.1016/j.scitotenv.2020.136594 | |
dc.relation | Wickham, R., Xie, S., Galway, B., Bustamante, H., & Nghiem, L. D. (2018). Anaerobic digestion of soft drink beverage waste and sewage sludge. Bioresource Technology, 262(March), 141–147. https://doi.org/10.1016/j.biortech.2018.04.046 | |
dc.relation | Xing, B. S., Cao, S., Han, Y., Wen, J., Zhang, K., & Wang, X. C. (2020). Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions. Bioresource Technology, 307(January), 123195. https://doi.org/10.1016/j.biortech.2020.123195 | |
dc.relation | Xu, H., Li, Y., Hua, D., Zhao, Y., Mu, H., Chen, H., & Chen, G. (2020). Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresource Technology, 306(December 2019), 123090. https://doi.org/10.1016/j.biortech.2020.123090 | |
dc.relation | Zhang, L., Ban, Q., Li, J., & Wan, C. (2019). Functional bacterial and archaeal dynamics dictated by pH stress during sugar refinery wastewater in a UASB. Bioresource Technology, 288(May), 121464. https://doi.org/10.1016/j.biortech.2019.121464 | |
dc.relation | Zhao, C., Lu, W., & Wang, H. (2013). Simultaneous hydrogen and ethanol production from a mixture of glucose and xylose using extreme thermophiles II: Effect of hydraulic retention time. International Journal of Hydrogen Energy, 38(22), 9131–9136. https://doi.org/10.1016/j.ijhydene.2013.05.077 | |
dc.relation | Zhong, J., Stevens, D. K., & Hansen, C. L. (2015). Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR). International Journal of Hydrogen Energy, 40(45), 15470–15476. https://doi.org/10.1016/j.ijhydene.2015.09.085 | |
dc.relation | Zhuang, H., Cheng, Z., Shan, S., Shen, H., & Zhao, B. (2020). Demonstration on the treatment of paper-making wastewater by a full-scale IC-A / O-membrane reactor system for reclamation. https://doi.org/10.1002/jctb.6494 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | Acceso abierto | |
dc.title | Evaluación de desempeño y optimización de parámetros operacionales en un reactor de fermentación oscura de recirculación interna para producción de hidrógeno | |