dc.contributorRodríguez C., Adela Tatiana
dc.contributorArias, Carlos Alberto
dc.creatorFuentes Escobar, Karol Lucia
dc.date.accessioned2021-12-27T23:35:29Z
dc.date.accessioned2022-09-28T20:51:31Z
dc.date.available2021-12-27T23:35:29Z
dc.date.available2022-09-28T20:51:31Z
dc.date.created2021-12-27T23:35:29Z
dc.date.issued2021-09-25
dc.identifierhttp://hdl.handle.net/10654/39759
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3736051
dc.description.abstractDe acuerdo con la Agencia Internacional de Energía IEA (2021) la innovación en materia tecnológica en el ámbito energético es necesaria para alcanzar los objetivos de mitigación del cambio climático, respaldando al mismo tiempo los objetivos del desarrollo sostenible. Recientemente la producción de biohidrógeno a partir de diferentes residuos orgánicos se ha convertido en una alternativa de bajo costo y eco-amigable.
dc.languagespa
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Militar Nueva Granada
dc.relation(IPCC), T. I. P. on C. C. (2020). Emissions Gap Emissions Gap Report 2020. Abdullah, M. F., Md Jahim, J., Abdul, P. M., & Mahmod, S. S. (2020). Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME). Biocatalysis and Agricultural Biotechnology, 23(September 2019), 101445. https://doi.org/10.1016/j.bcab.2019.101445
dc.relationAhmed, Y., Yaakob, Z., Akhtar, P., & Sopian, K. (2015). Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renewable and Sustainable Energy Reviews, 42, 1260–1278. https://doi.org/10.1016/j.rser.2014.10.073
dc.relationAit Hsine, E., Benhammou, A., & Pons, M. N. (2005a). Water resources management in soft drink industry-water use and wastewater generation. Environmental Technology, 26(12), 1309–1316. https://doi.org/10.1080/09593332608618605
dc.relationAit Hsine, E., Benhammou, A., & Pons, M. N. (2005b). Water resources management in soft drink industry-water use and wastewater generation. Environmental Technology, 26(12), 1309–1316. https://doi.org/10.1080/09593332608618605
dc.relationAkhlaghi, N., & Najafpour-darzi, G. (2020). ScienceDirect A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy, 45(43), 22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182
dc.relationAlgapani, D. E., Qiao, W., Ricci, M., Bianchi, D., M. Wandera, S., Adani, F., & Dong, R. (2019). Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy, 130, 1108–1115. https://doi.org/10.1016/j.renene.2018.08.079
dc.relationAlgapani, D. E., Qiao, W., Su, M., di Pumpo, F., Wandera, S. M., Adani, F., & Dong, R. (2016). Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process. Bioresource Technology, 216(June), 768–777. https://doi.org/10.1016/j.biortech.2016.06.016
dc.relationAli, R., Saravia, F., Hille-Reichel, A., Gescher, J., & Horn, H. (2021). Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. Bioresource Technology, 319(July 2020), 124166.
dc.relationAli, Y., Fraidoon, F., Issakhov, A., Selim, M. M., & Li, Z. (2021). Optimization analysis of hydrogen production using ammonia decomposition. 335. https://doi.org/10.1016/j.molliq.2021.116190
dc.relationAndrew, E., Nakhla, G., & Haroun, B. M. (2019). ScienceDirect Co-fermentation of carbohydrates and proteins for biohydrogen production : Statistical optimization using Response Surface Methodology. International Journal of Hydrogen Energy, 45(4), 2640–2654. https://doi.org/10.1016/j.ijhydene.2019.11.160
dc.relationAPHA (American Public Health Association). (2012). Standard Methods for examination of water and wastewater,” 22nd ed. Washington: American Public Health Association (22th ed.).
dc.relationArashiro, L. T., Ferrer, I., Rousseau, D. P. L., Van Hulle, S. W. H., & Garfí, M. (2019). The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresource Technology, 280(January), 27–36. https://doi.org/10.1016/j.biortech.2019.01.096
dc.relationAtasoy, M., Eyice, O., Schnürer, A., & Cetecioglu, Z. (2019). Bioresource Technology Volatile fatty acids production via mixed culture fermentation : Revealing the link between pH , inoculum type and bacterial composition. Bioresource Technology, 292(July), 121889. https://doi.org/10.1016/j.biortech.2019.121889
dc.relationBao, M. D., Su, H. J., & Tan, T. W. (2013). Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel, 112, 38–44. https://doi.org/10.1016/j.fuel.2013.04.063
dc.relationBarca, C., Soric, A., Ranava, D., Giudici-orticoni, M., & Ferrasse, J. (2015). Bioresource Technology Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater : A review. Bioresource Technology, 185, 386–398. https://doi.org/10.1016/j.biortech.2015.02.063
dc.relationBoguniewicz-Zabłocka, J., Capodaglio, A. G., & Vogel, D. (2017). Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry. E3S Web of Conferences, 19. https://doi.org/10.1051/e3sconf/20171902014
dc.relationBoshagh, F. (2021). ScienceDirect Measurement methods of carbohydrates in dark fermentative hydrogen production- A review. International Journal of Hydrogen 54 Energy, 46(47), 24028–24050. https://doi.org/10.1016/j.ijhydene.2021.04.204
dc.relationBruns, R. E., & Scarminio, I. S. (2006). Statistical design — Chemometrics (S. Rutan & W. B (eds.); Volume 25). Data Handling in Science and Techonology.
dc.relationCai, M., Luo, G., Li, J., Li, W., Li, Y., & Li, A. (2021). Chemosphere Substrate competition and microbial function in sulfate-reducing internal circulation anaerobic reactor in the presence of nitrate. Chemosphere, 280(April), 130937. https://doi.org/10.1016/j.chemosphere.2021.130937
dc.relationCastelló, E., Nunes Ferraz-Junior, A. D., Andreani, C., Anzola-Rojas, M. del P., Borzacconi, L., Buitrón, G., Carrillo-Reyes, J., Gomes, S. D., Maintinguer, S. I., Moreno-Andrade, I., Palomo-Briones, R., Razo-Flores, E., Schiappacasse-Dasati, M., Tapia-Venegas, E., Valdez-Vázquez, I., Vesga-Baron, A., Zaiat, M., & Etchebehere, C. (2020). Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions. Renewable and Sustainable Energy Reviews, 119(May). https://doi.org/10.1016/j.rser.2019.109602
dc.relationChaikitkaew, S., Kongjan, P., & O-Thong, S. (2015). Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. In Energy Procedia (Vol. 79). Elsevier B.V. https://doi.org/10.1016/j.egypro.2015.11.575 Chen, J., Liu, Y., Liu, K., Hu, L., Yang, J., Wang, X., Song, Z. ling, Yang, Y., Tang, M., & Wang, R. (2021a). Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment. Bioresource Technology, 331(February), 125027. https://doi.org/10.1016/j.biortech.2021.125027
dc.relationChen, J., Liu, Y., Liu, K., Hu, L., Yang, J., Wang, X., Song, Z. ling, Yang, Y., Tang, M., & Wang, R. (2021b). Bacterial community composition of internal circulation reactor at different heights for large-scale brewery wastewater treatment. Bioresource Technology, 331(March), 125027. https://doi.org/10.1016/j.biortech.2021.125027
dc.relationChen, P. T., Hong, Z. S., Cheng, C. L., Ng, I. S., Lo, Y. C., Nagarajan, D., & Chang, J. S. (2020). Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 308(March), 123266. https://doi.org/10.1016/j.biortech.2020.123266
dc.relationChen, Yang, Yin, Y., & Wang, J. (2021). Recent advance in inhibition of dark fermentative 55 hydrogen production. International Journal of Hydrogen Energy, 46(7), 5053–5073. https://doi.org/10.1016/j.ijhydene.2020.11.096
dc.relationChen, Yinguang, Li, X., Zheng, X., & Wang, D. (2012). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47(2), 615–622. https://doi.org/10.1016/j.watres.2012.10.035
dc.relationCieciura-Włoch, W., Borowski, S., & Domański, J. (2020). Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresource Technology, 314(April). https://doi.org/10.1016/j.biortech.2020.123713
dc.relationFeng, K., Wang, Q., Li, H., Zhang, Y., Deng, Z., Liu, J., & Du, X. (2020). Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renewable Energy, 154, 385–393. https://doi.org/10.1016/j.renene.2020.03.051
dc.relationFonseca, B. C., Bortolucci, J., Marques, T., Fabiano, V., Gouvêa, P. F. De, Dinamarco, T. M., & Reginatto, V. (2020). Bioresource Technology Reports Butyric acid as sole product from xylose fermentation by a non- solventogenic Clostridium beijerinckii strain under controlled pH and nutritional conditions. Bioresource Technology Reports, 10(April), 100426. https://doi.org/10.1016/j.biteb.2020.100426
dc.relationFritsch, M., Hartmeier, W., & Chang, J. S. (2008). Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings. International Journal of Hydrogen Energy, 33(22), 6549–6557. https://doi.org/10.1016/j.ijhydene.2008.07.070
dc.relationFuess, L. T., Kiyuna, L. S. M., Ferraz, A. D. N., Persinoti, G. F., Squina, F. M., Garcia, M. L., & Zaiat, M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, 189, 480–491. https://doi.org/10.1016/j.apenergy.2016.12.071
dc.relationGarg, M. (2019). Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. 91–115. https://doi.org/10.1007/978-981-13-1468-1
dc.relationGomes, A., Paranhos, D. O., & Silva, E. L. (2020). Biomass and Bioenergy Statistical optimization of H 2 , 1 , 3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor : Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(April 2019), 105575. https://doi.org/10.1016/j.biombioe.2020.105575
dc.relationGopalakrishnan, B., Khanna, N., & Das, D. (2019). Dark-Fermentative Biohydrogen 57 Production. In Biohydrogen. https://doi.org/10.1016/b978-0-444-64203-5.00004-6
dc.relationGunes, B., Stokes, J., Davis, P., Connolly, C., & Lawler, J. (2021). Optimisation of anaerobic digestion of pot ale after thermochemical pre-treatment through Response Surface Methodology. Biomass and Bioenergy, 144(November 2020), 105902. https://doi.org/10.1016/j.biombioe.2020.105902
dc.relationHan, G., Shin, S. G., Lee, J., Shin, J., & Hwang, S. (2017). A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresource Technology, 245(June), 869–875. https://doi.org/10.1016/j.biortech.2017.08.167
dc.relationHashemi, S. E., Sarker, S., Lien, K. M., Schnell, S. K., & Austbø, B. (2019). Cryogenic vs. absorption biogas upgrading in liquefied biomethane production – An energy efficiency analysis. Fuel, 245(January), 294–304. https://doi.org/10.1016/j.fuel.2019.01.172
dc.relationHernández, D. M., Andrea, L., & Rodríguez-chaparro, A. T. (2018). Hydrogen production in a novel configuration of UASB reactor under different hydraulic retention time • Producción de hidrógeno utilizando una nueva configuración de reactor anaerobio UASB bajo diferentes tiempos de retención hidráulica. 85(205), 157–162.
dc.relationHuang, Y., Ma, Y., Wan, J., & Wang, Y. (2019). Mathematical modelling of the internal circulation anaerobic reactor by Anaerobic Digestion Model No . 1 , simultaneously combined with hydrodynamics. Scientific Reports, July 2018, 1–13. https://doi.org/10.1038/s41598-019-42755-0
dc.relationInstituto de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2007). Protocolo para el monitoreo y seguimiento del agua.
dc.relationIrizar, I., Roche, E., Beltrán, S., Aymerich, E., & Esteban-Gutiérrez, M. (2018). Model-based design of a software sensor for real-time diagnosis of the stability conditions in high-rate anaerobic reactors – Full-scale application to Internal Circulation technology. Water Research, 143, 479–491. https://doi.org/10.1016/j.watres.2018.06.055
dc.relationIsla, M. A., Comelli, R. N., & Seluy, L. G. (2013b). Wastewater from the soft drinks industry as a source for bioethanol production. Bioresource Technology, 136, 140–147. https://doi.org/10.1016/j.biortech.2013.02.089
dc.relationJiang, D., Ge, X., Zhang, T., Chen, Z., Zhang, Z., He, C., Zhang, Q., & Li, Y. (2020). Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)2. Bioresource Technology, 304(December 2019), 123001. https://doi.org/10.1016/j.biortech.2020.123001
dc.relationJiang, Y., Dennehy, C., Lawlor, P. G., Hu, Z., McCabe, M., Cormican, P., Zhan, X., & Gardiner, G. E. (2018). Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Waste Management, 79, 302–311. https://doi.org/10.1016/j.wasman.2018.07.049
dc.relationKarapinar, I., Gokfiliz Yildiz, P., Pamuk, R. T., & Karaosmanoglu Gorgec, F. (2020). The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. International Journal of Hydrogen Energy, 45(5), 3524–3531. https://doi.org/10.1016/j.ijhydene.2018.12.195
dc.relationKhan, M. A., Ngo, H. H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S. W., Nguyen, D. D., & Wang, J. (2017). Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renewable Energy, 129. https://doi.org/10.1016/j.renene.2017.04.029
dc.relationKim, D. H., Kim, S. H., Jung, K. W., Kim, M. S., & Shin, H. S. (2011). Effect of initial pH independent of operational pH on hydrogen fermentation of food waste. Bioresource Technology, 102(18), 8646–8652. https://doi.org/10.1016/j.biortech.2011.03.030
dc.relationKovalev, A. A., Kovalev, D. A., Litti, Y. V., & Katraeva, I. V. (2020). Biohydrogen production in the two-stage process of anaerobic bioconversion of organic matter of liquid organic waste with recirculation of digister effluent. International Journal of 59 Hydrogen Energy, 45(51), 26831–26839. https://doi.org/10.1016/j.ijhydene.2020.07.124
dc.relationKrishna, D., & Kalamdhad, A. S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. Journal of Environmental Chemical Engineering, 2(3), 1821–1830. https://doi.org/10.1016/j.jece.2014.07.024
dc.relationKumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197(117253), 117253. https://doi.org/10.1016/j.energy.2020.117253
dc.relationKumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90(April), 877–891. https://doi.org/10.1016/j.rser.2018.03.111
dc.relationLay, C. H., Vo, T. P., Lin, P. Y., Abdul, P. M., Liu, C. M., & Lin, C. Y. (2019). Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 44(28), 14351–14361. https://doi.org/10.1016/j.ijhydene.2019.03.165
dc.relationLi, H., Zhang, Y., Yang, M., & Kamagata, Y. (2013). Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Frontiers of Environmental Science and Engineering in China, 7(1), 43–48. https://doi.org/10.1007/s11783-012-0397-8
dc.relationLi, X., Guo, L., Liu, Y., Wang, Y., She, Z., Gao, M., & Zhao, Y. (2020). Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. Journal of Environmental Management, 271(January), 111023. https://doi.org/10.1016/j.jenvman.2020.111023
dc.relationLiu, J., Wang, C., Wu, K., Huang, L., Tang, Z., Zhang, C., Wang, C., Zhao, X., Yin, F., Yang, B., Liu, J., Yang, H., & Zhang, W. (2020). Novel start-up process for the efficient degradation of high COD wastewater with up-flow anaerobic sludge blanket technology and a modified internal circulation reactor. Bioresource Technology, 308(February), 123300. https://doi.org/10.1016/j.biortech.2020.123300
dc.relationLiu, L., Hong, Z. Y., & Wong, C. H. (2006). Convergent glycopeptide synthesis by traceless staudinger ligation and enzymatic coupling. ChemBioChem, 7(3), 429–432. https://doi.org/10.1002/cbic.200500437
dc.relationLiu, M., Li, C., Cao, C., Wang, L., Li, X., Che, J., & Yang, H. (2021). Walnut Fruit Processing Equipment : Academic Insights and Perspectives. In Food Engineering Reviews (Issue 0123456789). Springer US. https://doi.org/10.1007/s12393-020-09273-6
dc.relationLiu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., & Xing, X. H. (2018). Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. In Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2017.08.014
dc.relationLopez, C. A., McNeely, T. P., Nurmakova, K., Beavers, W. N., & Skaar, E. P. (2020). Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe, 63, 102210. https://doi.org/10.1016/j.anaerobe.2020.102210
dc.relationLu, J. Y., Wang, X. M., Liu, H. Q., Yu, H. Q., & Li, W. W. (2019). Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environment International, 129(May), 273–278. https://doi.org/10.1016/j.envint.2019.05.057
dc.relationLuo, G., Li, J., Li, Y., Wang, Z., Li, W., & Li, A. (2016). Bioresource Technology Performance , kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate : Role of external hydraulic circulation. Bioresource Technology, 222, 470–477. https://doi.org/10.1016/j.biortech.2016.10.023
dc.relationMahata, C., Ray, S., & Das, D. (2020a). Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management, 219(June), 113047. https://doi.org/10.1016/j.enconman.2020.113047
dc.relationMahata, C., Ray, S., & Das, D. (2020b). Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management, 219(April), 113047. https://doi.org/10.1016/j.enconman.2020.113047
dc.relationMartinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Molina, D., & Soccol, C. R. (2021). Hydrogen production by dark fermentation using a new low-cost culture medium composed of corn steep liquor and cassava processing water: Process optimization and scale-up. Bioresource Technology, 320(October 2020). https://doi.org/10.1016/j.biortech.2020.124370
dc.relationMazareli, R. C. da S., Villa Montoya, A. C., Delforno, T. P., Centurion, V. B., de Oliveira, V. M., Silva, E. L., & Varesche, M. B. A. (2021). Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: Optimization of pH and temperature. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2020.12.063
dc.relationMeky, N., Elreedy, A., Ibrahim, M. G., Fujii, M., & Tawfik, A. (2021). Intermittent versus sequential dark-photo fermentative hydrogen production as an alternative for bioenergy recovery from protein-rich effluents. Energy, 217. 62 https://doi.org/10.1016/j.energy.2020.119326
dc.relationMeky, N., Ibrahim, M. G., Fujii, M., Elreedy, A., & Tawfik, A. (2020). Integrated dark-photo fermentative hydrogen production from synthetic gelatinaceous wastewater via cost-effective hybrid reactor at ambient temperature. Energy Conversion and Management, 203(August 2019), 112250. https://doi.org/10.1016/j.enconman.2019.112250
dc.relationMishra, P., Singh, L., Ab, Z., Krishnan, S., Rana, S., Islam, M. A., Sakinah, M., Ameen, F., & Syed, A. (2018). Photohydrogen production from dark-fermented palm oil mill ef fl uent ( DPOME ) and statistical optimization : Renewable substrate for hydrogen. Journal of Cleaner Production, 199, 11–17. https://doi.org/10.1016/j.jclepro.2018.07.028
dc.relationMockaitis, G., Bruant, G., Guiot, S. R., Peixoto, G., Foresti, E., & Zaiat, M. (2020a). Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renewable Energy, 145, 1388–1398. https://doi.org/10.1016/j.renene.2019.06.134
dc.relationMontoya-Rosales, J. J., Peces, M., González-Rodríguez, L. M., Alatriste-Mondragón, F., & Villa-Gómez, D. K. (2020). A broad overview comparing a fungal, thermal and acid pre-treatment of bean straw in terms of substrate and anaerobic digestion effect. Biomass and Bioenergy, 142(May 2019), 1–8. https://doi.org/10.1016/j.biombioe.2020.105775
dc.relationMoreno Dávila, I. M. M., Tamayo Ordoñez, M. C., Morales Martínez, T. K., Soria Ortiz, A. I., Gutiérrez Rodríguez, B., Rodríguez de la Garza, J. A., & Ríos González, L. J. (2020). Effect of fermentation time/hydraulic retention time in a UASB reactor for hydrogen production using surface response methodology. International Journal of Hydrogen Energy, 45(26), 13702–13706. https://doi.org/10.1016/j.ijhydene.2019.12.137
dc.relationMurakami, K. (2020). Time-space network model and MILP formulation of the conflict-free routing problem of a capacitated AGV system. Computers and Industrial Engineering, 141(January 2019), 106270. https://doi.org/10.1016/j.cie.2020.106270
dc.relationNaaz, S., & Kumar, S. (2021). ScienceDirect Enhancement effect of zero-valent iron nanoparticle and iron oxide nanoparticles on dark fermentative hydrogen production from molasses- based distillery wastewater. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2021.06.125
dc.relationNizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097 Oliveira, M. De, Christe, M., & Sant, A. (2020). Biohydrogen production using xylose
dc.relationOuyang, E., Lu, Y., Ouyang, J., Wang, L., & Wang, X. (2019). Performance and dynamic characteristics of microbial communities in multi-stage anaerobic reactors treating gibberellin wastewater. Journal of Bioscience and Bioengineering, 127(3), 318–325. https://doi.org/10.1016/j.jbiosc.2018.05.017
dc.relationOzyurt, B., Soysal, F., Hitit, Z. Y., Camcioglu, S., Akay, B., & Ertunc, S. (2019). An efficient dark fermentative hydrogen production by GMV control of pH. International Journal of Hydrogen Energy, 44(36), 19709–19718. https://doi.org/10.1016/j.ijhydene.2019.06.048
dc.relationParanhos, A. G. de O., & Silva, E. L. (2020). Statistical optimization of H2, 1,3-propanediol and propionic acid production from crude glycerol using an anaerobic fluidized bed reactor: Interaction effects of substrate concentration and hydraulic retention time. Biomass and Bioenergy, 138(April), 105575. https://doi.org/10.1016/j.biombioe.2020.105575
dc.relationParra H., R. A. (2015). Anaerobic digestión: biotechnological mechanisms in waste water treatments and their application in food industry. Producción + Limpia, 10(2), 142–159. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S1909-04552015000200014
dc.relationPeintner, C., Zeidan, A. A., & Schnitzhofer, W. (2010). Bioreactor systems for thermophilic fermentative hydrogen production: Evaluation and comparison of appropriate systems. Journal of Cleaner Production, 18(SUPPL. 1), S15–S22. https://doi.org/10.1016/j.jclepro.2010.06.013
dc.relationPeixoto, G., Saavedra, N. K., Varesche, M. B. A., & Zaiat, M. (2011). Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. International Journal of Hydrogen Energy, 36(15), 8953–8966. https://doi.org/10.1016/j.ijhydene.2011.05.014
dc.relationPetropoulos, E., Cuff, G., Huete, E., Garcia, G., Wade, M., Spera, D., Aloisio, L., Rochard, J., Torres, A., & Weichgrebe, D. (2016). Investigating the feasibility and the limits of high rate anaerobic winery wastewater treatment using a hybrid-EGSB bio-reactor. Process Safety and Environmental Protection, 102, 107–118. https://doi.org/10.1016/j.psep.2016.02.015
dc.relationPetta, L., De Gisi, S., Casella, P., Farina, R., & Notarnicola, M. (2017). Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption. Journal of Environmental Management, 201, 177–189. https://doi.org/10.1016/j.jenvman.2017.06.042
dc.relationPu, Y., Tang, J., Wang, X. C., Hu, Y., Huang, J., Zeng, Y., Ngo, H. H., & Li, Y. (2019). Hydrogen production from acidogenic food waste fermentation using untreated inoculum: Effect of substrate concentrations. International Journal of Hydrogen Energy, 44(50), 27272–27284. https://doi.org/10.1016/j.ijhydene.2019.08.230
dc.relationRajesh Banu, J., Ginni, G., Kavitha, S., Yukesh Kannah, R., Adish Kumar, S., Bhatia, S. K., & Kumar, G. (2021). Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresource Technology, 319(October 2020), 124241. https://doi.org/10.1016/j.biortech.2020.124241
dc.relationRao, R., & Basak, N. (2021). Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. International Journal of Hydrogen Energy, 46(2), 1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142
dc.relationRemya, N., & Swain, A. (2019). Soft drink industry wastewater treatment in microwave photocatalytic system – Exploration of removal efficiency and degradation mechanism. Separation and Purification Technology, 210(August 2018), 600–607. https://doi.org/10.1016/j.seppur.2018.08.051
dc.relationRi, P. C., Kim, J. S., Kim, T. R., Pang, C. H., Mun, H. G., Pak, G. C., & Ren, N. Q. (2019). Effect of hydraulic retention time on the hydrogen production in a horizontal and vertical continuous stirred-tank reactor. International Journal of Hydrogen Energy, 44(33), 17742–17749. https://doi.org/10.1016/j.ijhydene.2019.05.136
dc.relationSabrina, H., Yahya, M., Abbas, T., Aishah, N., & Amin, S. (2020). ScienceDirect Optimization of hydrogen production via toluene steam reforming over Ni e Co supported modified- activated carbon using ANN coupled GA and RSM. International Journal of Hydrogen Energy, 46(48), 24632–24651. https://doi.org/10.1016/j.ijhydene.2020.05.033
dc.relationShanmugam, S. R., Chaganti, S. R., Lalman, J. A., & Heath, D. D. (2014). Statistical optimization of conditions for minimum H2 consumption in mixed anaerobic cultures: Effect on homoacetogenesis and methanogenesis. International Journal of Hydrogen Energy, 39(28), 15433–15445. https://doi.org/10.1016/j.ijhydene.2014.07.143
dc.relationShi, X., Zuo, J., Li, B., & Yu, H. (2020). Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community. Bioresource Technology, 297(September 2019), 122458. https://doi.org/10.1016/j.biortech.2019.122458
dc.relationSi, B., Liu, Z., Zhang, Y., Li, J., Shen, R., Zhu, Z., & Xing, X. (2016). Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. International Journal of Hydrogen Energy, 41(7), 4429–4438. https://doi.org/10.1016/j.ijhydene.2015.06.045
dc.relationSilva-Illanes, F., Tapia-Venegas, E., Schiappacasse, M. C., Trably, E., & Ruiz-Filippi, G. (2017). Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy, 141, 358–367. https://doi.org/10.1016/j.energy.2017.09.073
dc.relationSinharoy, A., Kumar, M., & Pakshirajan, K. (2020). An overview of bioreactor configurations and operational strategies for dark fermentative biohydrogen production. In Bioreactors (Issue x). INC. https://doi.org/10.1016/b978-0-12-821264-6.00014-0
dc.relationSivaramakrishnan, R., Shanmugam, S., Sekar, M., Mathimani, T., Incharoensakdi, A., Kim, S. H., Parthiban, A., Edwin Geo, V., Brindhadevi, K., & Pugazhendhi, A. (2021). Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel, 291(December 2020), 120136. https://doi.org/10.1016/j.fuel.2021.120136
dc.relationSrisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2020). Critical considerations in two-stage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 119(November 2019). https://doi.org/10.1016/j.rser.2019.109587
dc.relationSunyoto, N. M. S., Sugiarto, Y., & Zhu, M. (2019). ScienceDirect Transient performance during start-up of a two- phase anaerobic digestion process demonstration unit treating carbohydrate-rich waste with biochar addition. International Journal of Hydrogen Energy, 44(28), 14341–14350. https://doi.org/10.1016/j.ijhydene.2019.04.037
dc.relationTarelho, C., Alavi-borazjani, S. A., & Capela, M. I. (2021). ScienceDirect Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. 6, 2–12. https://doi.org/10.1016/j.ijhydene.2021.04.017
dc.relationTaylor, P., Li, C., & Fang, H. H. P. (2007). Critical Reviews in Environmental Science and Technology Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures. August 2013, 37–41. https://doi.org/10.1080/10643380600729071
dc.relationTeófilo, R. F. (2006). Quimiometria ii: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial Reinaldo F. Teófilo e Márcia M. C. Ferreira*. 29(2), 338–350.
dc.relationUfrgs, I. P. H. (2020). Hydrogen production potential comparison of sucrose and crude glycerol using different inoculums sources Maria Cristina de Almeida Silva * and. 25(4), 395–408.
dc.relationVan Niel, E. W. J., Budde, M. A. W., De Haas, G., Van der Wal, F. J., Claassen, P. A. M., & Stams, A. J. M. (2002). Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy, 27(11–12), 1391–1398. https://doi.org/10.1016/S0360-3199(02)00115-5
dc.relationWainaina, S., Awasthi, M. K., Horváth, I. S., & Taherzadeh, M. J. (2020). Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy, 152, 1140–1148. https://doi.org/10.1016/j.renene.2020.01.138
dc.relationWang, B., Li, Y., & Ren, N. (2013). Biohydrogen from molasses with ethanol-type fermentation : Effect of hydraulic retention time. International Journal of Hydrogen 68 Energy, 38(11), 4361–4367. https://doi.org/10.1016/j.ijhydene.2013.01.120
dc.relationWang, D., Yi, N., Wang, Y., Yang, J., Fu, Q., Liu, X., Yang, Q., Cai, Z., Ye, J., Liu, Y., Wang, Q., & Ni, B. J. (2021). Triclosan degradation in sludge anaerobic fermentation and its impact on hydrogen production. Chemical Engineering Journal, 421(P1), 129948. https://doi.org/10.1016/j.cej.2021.129948
dc.relationWang, T. T., Wang, S. P., Zhong, X. Z., Sun, Z. Y., Huang, Y. L., Tan, L., Tang, Y. Q., & Kida, K. (2017). Converting digested residue eluted from dry anaerobic digestion of distilled grain waste into value-added fertilizer by aerobic composting. Journal of Cleaner Production, 166, 530–536. https://doi.org/10.1016/j.jclepro.2017.08.075
dc.relationWei, W., Wu, L., Liu, X., Chen, Z., Hao, Q., Wang, D., Liu, Y., Peng, L., & Ni, B.-J. (2020a). How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge? Science of The Total Environment, 713, 136594. https://doi.org/10.1016/j.scitotenv.2020.136594
dc.relationWickham, R., Xie, S., Galway, B., Bustamante, H., & Nghiem, L. D. (2018). Anaerobic digestion of soft drink beverage waste and sewage sludge. Bioresource Technology, 262(March), 141–147. https://doi.org/10.1016/j.biortech.2018.04.046
dc.relationXing, B. S., Cao, S., Han, Y., Wen, J., Zhang, K., & Wang, X. C. (2020). Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions. Bioresource Technology, 307(January), 123195. https://doi.org/10.1016/j.biortech.2020.123195
dc.relationXu, H., Li, Y., Hua, D., Zhao, Y., Mu, H., Chen, H., & Chen, G. (2020). Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresource Technology, 306(December 2019), 123090. https://doi.org/10.1016/j.biortech.2020.123090
dc.relationZhang, L., Ban, Q., Li, J., & Wan, C. (2019). Functional bacterial and archaeal dynamics dictated by pH stress during sugar refinery wastewater in a UASB. Bioresource Technology, 288(May), 121464. https://doi.org/10.1016/j.biortech.2019.121464
dc.relationZhao, C., Lu, W., & Wang, H. (2013). Simultaneous hydrogen and ethanol production from a mixture of glucose and xylose using extreme thermophiles II: Effect of hydraulic retention time. International Journal of Hydrogen Energy, 38(22), 9131–9136. https://doi.org/10.1016/j.ijhydene.2013.05.077
dc.relationZhong, J., Stevens, D. K., & Hansen, C. L. (2015). Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR). International Journal of Hydrogen Energy, 40(45), 15470–15476. https://doi.org/10.1016/j.ijhydene.2015.09.085
dc.relationZhuang, H., Cheng, Z., Shan, S., Shen, H., & Zhao, B. (2020). Demonstration on the treatment of paper-making wastewater by a full-scale IC-A / O-membrane reactor system for reclamation. https://doi.org/10.1002/jctb.6494
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.titleEvaluación de desempeño y optimización de parámetros operacionales en un reactor de fermentación oscura de recirculación interna para producción de hidrógeno


Este ítem pertenece a la siguiente institución