dc.contributorCoy Barrera, Ericsson
dc.creatorRavagli Castillo, Andrea Carolina
dc.date.accessioned2017-06-30T18:08:41Z
dc.date.accessioned2019-12-26T21:08:55Z
dc.date.accessioned2022-09-28T20:50:40Z
dc.date.available2017-06-30T18:08:41Z
dc.date.available2019-12-26T21:08:55Z
dc.date.available2022-09-28T20:50:40Z
dc.date.created2017-06-30T18:08:41Z
dc.date.created2019-12-26T21:08:55Z
dc.date.issued2017-04-21
dc.identifierhttp://hdl.handle.net/10654/16163
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3735762
dc.description.abstractEn las interacciones de las plantas con su entorno se producen respuestas metabólicas a través de la síntesis de metabolitos secundarios y, por tanto, los factores ambientales y ecológicos que influyen en la planta establecen variaciones en sus perfiles metabólicos. En el caso de los alcaloides, que se encuentran ampliamente distribuidos en plantas y son agentes activos en las interacciones evolutivas debido a que su metabolismo está controlado bajo regulación genética, se convierten en componentes variables relacionados con acondicionamiento debido a presiones externas. En este contexto, como parte del interés del grupo en el estudio de respuestas metabólicas de angiospermas basales, se evaluó la variación del metaboloma y la composición alcaloidal de la especie Magnolia grandiflora (Magnoliaceae) distribuida en diferentes lugares. A partir de los extractos etanólicos de hojas y cortezas analizados por HPLC-DAD-MS se detectaron 23 compuestos secundarios, de los cuales 13 correspondían a alcaloides, acompañados de lignanos y neolignanos, lactonas sesquiterpénicas, antraquinona, y triterpeno. En el análisis por HPLC-DAD-MS de los extractos alcaloidales de hojas y cortezas, se detectaron 28 compuestos secundarios de los cuales 23 eran alcaloides entre los que se destacaron los tipos aporfinoide (dehidroaporfinas y dioxoaporfinas), isoquinolínicos y bis-bencilisoquinolínicos, morfinanos, y alcaloides derivados del tipo hasubanonina. El análisis multivariado supervisado (i.e., OPLS) con la cuantificación de fenoles conectó la naturaleza fenólica de ciertos alcaloides expresados por la planta que, en su mayoría, fueron del tipo aporfinoide, los cuales concuerdan con la incorporación de fenoles en su estructura por proceso biosintético. En general, el análisis multivariado confirmó por consiguiente que existe variación en los perfiles metabólicos y en la composición alcaloidal en relación a las partes de la planta evaluadas, los tiempos de colecta y los ambientes establecidos. Así mismo, varias muestras de hojas y cortezas biosintetizaron compuestos secundarios específicos, incluidos los alcaloides, en tiempos de colecta diferentes. Con los resultados obtenidos se puede establecer que la planta M. grandiflora presenta quimiotipos ricos en alcaloides, especialmente del tipo aporfinoide, en respuesta a condiciones ambientales y ecológicas diferentes.
dc.languagespa
dc.publisherFacultad de Ciencias Básicas
dc.publisherBiología Aplicada
dc.publisherUniversidad Militar Nueva Granada
dc.relationAhmed SM. y Adeglegaleil SAM. 2005. Antifungal activity of extracts and sesquiterpene lactones from Magnolia grandiflora L. (Magnoliaceae). Int. J. Agr. Biol. 7(4): 638-642
dc.relationAniszewski T. 2007. Alkaloids-Secrets of life. Alkaloid chemistry, biological significance, applications and ecological role. First edition, Elsevier, UK, pp. 6-12, 141-143, 148-168
dc.relationAPG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105-121
dc.relationArango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 3, 38-50
dc.relationArora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. 2012. Honokiol: a novel natural agent for cancer prevention and therapy. Curr. Mol. Med. 12(10): 1244-1252
dc.relationAzuma H, Thien LB, Toyota M, Asakawa Y, Kawano S. 1997. Distribution and differential expression of (E)-4,8 -dimetil-1,3,7 –nonatriene in leaf and floral volatiles of Magnolia and Liriodendron taxa. J. Chem. Ecol. 23(11): 2467-2478
dc.relationAzuma H, García-Franco JG, Rico-Gray V, Thien LB. 2001. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctuions. Am. J. Bot. 88:2275-2285
dc.relationBenson WW, Brown KS, Gilbert LE. 1976. Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29: 659-680
dc.relationBermejo A, Protais P, Blazquez MA, Rao KS, Zafra-Polo MC, Cortes D. 1995. Dopaminergic Isoquinoline Alkaloids from roots of Xylopia papuana. Nat. Prod. Res. 6: 57-62
dc.relationCastaneda-Acosta J, Cain AW, Fischer NH, Knopf FC. 1995. Extraction of bioactive sesquiterpene lactones from Magnolia grandiflora using supercritical carbon dioxide and near-critical propane. J. Agric. Food. Chem. 43(1): 63-68
dc.relationCavé A, Rasamizafy S, Hocquemiller R, Deverre JR, Hadi AHA. 1986. Alcaloides de Annonaceas 70. Pl. Med. Phytoth. 20: 251-254
dc.relationChang WL, Chung CH, Wu YC, Su MJ. 2004. The vascular and cardioprotective effects of liriodenine in ischemia-reperfusion injury via NO-dependent pathway. Nitric Oxide 11(4): 307-315
dc.relationChen BH, Chang HW, Huang HM, Chong IW, Chen JS, Chen CY, Wang HM. 2011. (-)-Anonaine induces DNA damage and inhibits growth and migration of human lung carcinoma h1299 cells. J. Agric. Food. Chem. 59: 2284-2290
dc.relationChen BL. y Nooteboom HP. 1993. Notes on Magnoliaceae III: the Magnoliaceae of China. Ann. Missouri Bot. Gard. 80: 999-1104
dc.relationChen JH, Du ZZ, Shen YM, Yang YP. 2009. Aporphine alkaloids from Clematis parviloba and their antifungal activity. Arch. Pharm. Res. 32(1): 3-5
dc.relationChiu N. y Chang K. 1995. The illustrated medicinal plants in Taiwan. Vol. 3. SMC Publ. Inc. Taiwan, pp 312
dc.relationChulia S, Ivorra MD, Cave A, Cortes D, Noguera MA, D’Ocon MP. 1995. Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J. Pharm. Pharmacol. 47: 647-650
dc.relationChung HS, Hon PM, Lin G, But PH, Dong H. 2003. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 69: 914-920
dc.relationCicuzza D, Newton A, Oldfield S. 2007. The red list of Magnoliaceae. Primera edición. Fauna y Flora Internacional, Cambridge, UK, pp. 52
dc.relationClark AM, El-Feraly AS, Li WS. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J. Pharm. Sci. 70: 951-952
dc.relationCrane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature 374: 27-33
dc.relationDavé PC, Vogler B, Setzer WN. 2011. Composition of the floral essential oil of Magnolia grandiflora L. (Magnoliaceae): intraspecific and floral maturity variations. J. Essent. Oil Bear. Plant. 15(5): 694-702
dc.relationDeguchi T, Urakawa N, Hayama T, Ohkubo Y. 1963. Ganglion stimulating action of Candicine. Jpn. J. Pharmacol 13: 143-159
dc.relationDel Valle-Mondragón L, Tenorio-López FA, Zarco-Olvera G, Pastelín-Hernández G. 2007. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C Bio. 62(9-10): 725-730
dc.relationDewick PM. 2009. Medicinal Natural Products. A Biosynthetic Approach. Third Edition, John Wiley and Sons, Ltda, United Kingdom, pp. 7-8, 311, 336-355
dc.relationDey PM. y Harborne JB. 1997. Plant Biochemistry. Academic Press, United Kingdom, pp. 503-504
dc.relationDilcher DL. y Crane PR. 1984. Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Ann. Missouri Bot. Gard. 71: 351-383
dc.relationDuke JA. y Ayensu ES. 1985. Medicinal plants of China. Vol. 1 and 2. Reference Publ. Inc., Michigan, pp. 705
dc.relationEl-Feraly FS. y Chan YM. 1978. Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L. J. Pharm. Sci. 67(3): 347-350
dc.relationFadaeinasab M, Taha H, Mohd-Fauzi PN, Widyawaruyant A. 2015. Anti-malarial activity of isoquinoline alkaloids from the stem bark of Actinodaphne macrophylla. Nat. Prod. Commun. 10(9): 1541-1542
dc.relationFeild TS, Arens NC, Dawson TE. 2003. The ancestral ecology of Angiosperms: emerging perspectives from extant basal lineages. Int. J. Plant Sci. 164: S129-S142
dc.relationFiglar RB. y Nooteboom HP. 2004. Notes on Magnoliaceae IV. Blumea 49: 87-100
dc.relationGanzera M, Mair M, Stuppner H, Fischer NH, Khan IA. 2001. Analysis of sesquiterpene lactones in Magnolia grandiflora L. by micellar electrokinetic capillary chromatography. Chromatographia 54(9-10): 665-668
dc.relationGarcía N. 2007. Libro rojo de plantas de Colombia. Volumen 5: Las Magnoliáceas, Las Miristicáceas y Las Podocarpáceas. Serie libros rojos de especies amenazadas de Colombia. Instituto Alexander von Humboldt Bogotá, Colombia – CORANTIOQUIA- Jardín Botánico Joaquín Antonio Uribe de Medellín – Instituto de Ciencias Naturales de la Universidad Nacional de Colombia- Ministerio de Ambiente, Vivienda y Desarrollo Territorial, pp. 236
dc.relationGarg SN. y Kumar S. 1999. Volatile constituents from the flowers of Magnolia grandiflora L. from Lucknow, India. J. Essent. Oil Res. 11(5): 633-634
dc.relationGilman EF. y Watson DG. 1994. Magnolia grandiflora Southern Magnolia. Forest service. Department of agriculture. Fact sheet ST-371 pp. 3-4
dc.relationGlass DJ. y Hall N. 2008. A brief history of the hypothesis. Cell 134: 378-381
dc.relationGraziose R, Rathinasabapathy T, Lategan C, Poulev A, Smith PJ, Grace M, Lila MA, Raskin I. 2011. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L. J. Ethnopharmacol. 133(1): 26-30
dc.relationGuinaudeau H, Leboef M, Cavé A. 1975. Aporphine alcaloids. Lloydia 38: 275-338
dc.relationGülz PG, Müller E, Schmitz K, Marner FJ, Güth S. 1992. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z. Naturforsch. 47: 516-526
dc.relationHartman JR, Pirone TP, Sall MA. 2000. Pirone’s tree maintenance. Seventh edition, Oxford University Press, pp. 419
dc.relationHegnauer R. 1969. Chemotaxonomy Plant, Volume 5. Birkhäuser, Basel, Stuttgart, pp. 394-396
dc.relationHegnauer R. 1990. Chemotaxonomy Plant, Volume 9. Birkhäuser, Basel, Berlin, pp. 288-293
dc.relationHerbert RB. 1985. The chemistry and Biology of isoquinolina alkaloids. Editorial Springer-Verlag, Berlin, pp. 214
dc.relationHoffmann D. 2003. Medical Herbalism. The Science and Practice of Herbal Medicine. Healing Arts Press, Rochester Vermont, pp. 38
dc.relationHong L, Li G, Zhou W, Wang X, Zhang K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Manag. Sci. 63(3): 301-305
dc.relationHuang KC. 1999. The pharmacology of Chinese herbs. Second edition. CRC Press, New York, pp. 512
dc.relationJudd WS, Campbell CS, Kellog EA, Teven PF. 1999. Plant Systematics: a Phylogenetic approach. Sinauer Associates, Inc. Massachusetts, USA, pp. 464
dc.relationKell DB. y Oliver SG. 2004. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26: 99-105
dc.relationKhan MR, Kihara M, Omoloso AD. 2002. Antimicrobial activity of Michelia champaca. Fitoterapia 73(7-8): 744-748
dc.relationKim S, Chong-Wook P, Young-Dong K, Youngbae S. 2001. Phylogenetic relationships in family Magnoliaceae inferred from NDHF sequences. Am. J. Bot. 88: 717-728
dc.relationKoo TH, Lee JH, Park YJ, Hong YS, Kim HS, Kim KW, Lee JJ. 2001. A sesquiterpene lactone, costunolide from Magnolia grandiflora inhibits NF-kB by targeting IkB phosphorylation. Planta Med. 67: 103-107
dc.relationKosar M, Goeger F, Can BKH. 2008. In vitro antioxidant properties and phenolic composition of Salvia virgate Jacq. from Turkey. J. Agric. Food Chem. 56: 2369-2374
dc.relationKubitzki K, Rohwer JG, Bittrich V. 1993. The families and genera of vascular plants. Flowering plants. Dicotyledons. Magnoliid, Hamamelid and Caryophyllid families. Volume II. Springer-Verlag Berlin Heidelberg, pp. 397, 399
dc.relationLeonardo TE. y Mondor EB. 2006. Symbiont modifies host life history traits that affect gene flow. Proc. R. Soc. B 273 (1590): 1079-1084
dc.relationLim TK. 2014. Edible medicinal and non-medicinal plants. Volume 8, Flowers. Springer Science+Business Media Dordrecht, pp. 243-244
dc.relationLozano G. 1994. Dugandiodendron y Talauma (Magnoliaceae) en el neotropico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Colección Jorge Álvarez Lleras. Instituto de Ciencias Naturales Universidad Nacional No. 3. Editora Guadalupe Ltda, pp. 147
dc.relationLuckner M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. Third edition, Springer-Verlag, Berlin Heidelberg, pp. 8
dc.relationLuo XD, Wu SH, Ma YB, Wu DG, Zhou J. 2001. Sesquiterpenoids from Magnolia grandiflora. Planta Med. 67: 354-357
dc.relationLuo M, Sun JF, Zhang B, Jiang L. 2012. Chemical composition and antioxidant activity of essential oil from Magnolia grandiflora L. seed. J. Wuhan Univ. Natur. Sci. 17(3): 249-254
dc.relationMartínez AL, Domínguez F, Orozco S, Chávez M, Salgado H, Gonzalez M, Gonzalez-Trujano ME. 2006. Neuripharmacological effects of an etanol extract of the Magnolia dealbata Zucc. leaves in mice. J. Ethnopharmacol. 106: 250-255
dc.relationMartínez LA, Ríos JL, Paya M, Alcaraz MJ. 1992. Inhibition of nonenzymic lipid peroxidation by benzylisoquinoline alkaloids. Free Radic. Biol. Med. 12: 287-292
dc.relationMartínez-Vázquez M, Estrada-Reyes R, Araujo-Escalona AG, Ledesma-Velázquez I, Martínez-Mota L, Moreno J, Heinze G. 2012. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J. Ethnopharmacol. 139: 164-170
dc.relationMohamed SM, Hassan EM, Ibrahim NA. 2010. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L. Nat. Prod. Res. 24(15): 1395-1402
dc.relationMorrison N, Bearden D, Bundy JG, Collette T, Currie F, Davey MP, Haigh NS, Hancock D, Jones O, Rochfort S, Sansone SA, Stys D, Teng Q, Field D, Viant MR. 2007. Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3: 203-210
dc.relationNakano T. 1954a. Studies on the alkaloids of magnoliaceous plants. XII. Alkaloids of Magnolia grandiflora L. (1). Pharm. Bull. 2(4): 321-325
dc.relationNakano T. 1954b. Studies on the alkaloids of magnoliaceous plants. XIII. Alkaloids of Magnolia grandiflora L. (2). Pharm. Bull. 2(4): 326-328
dc.relationNakano T. 1954c. Studies on the alkaloids of magnoliaceous plants. XIV. Alkaloids of Magnolia grandiflora L. (3). Structure of magnoflorine. Pharm. Bull. 2(4): 329-334
dc.relationNitao JK, Nair MG, Thorogood DL, Johnson KS, Scriber JM. 1991. Bioactive neolignanos from the leaves of Magnolia virginiana (Magnoliaceae). Phytochemistry 30: 2193-2195
dc.relationNordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. 2015. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Dev. Ther. 9: 1437-1448
dc.relationPubchem. 2016. Open chemistry database. https://pubchem.ncbi.nlm.nih.gov/ [consultado Junio 20, 2016]
dc.relationPyo MK, Yun-Choi HS, Hong YJ. 2003. Antiplatelet activities of aporphine alkaloids isolated from leaves of Magnolia obovate. Planta Med. 69(3): 267-269
dc.relationRahman MM, Lopa SS, Sadik G, Harun-Or-Rashid, Islam R, Khondkar P, Alam AH, Rashid MA. 2005. Antibacterial and cytotoxic compounds from the bark of Cananga odorata. Fitoterapia 76(7-8): 758-761
dc.relationRao KV. 1975. Glycosides of Magnolia grandiflora. Part I: Isolation of three crystalline glycosides. Planta Med. 27(1): 31-36
dc.relationRao KV. y Davis TL. 1982. Constituents of Magnolia grandiflora I: mono-O-methylhonokiol. Planta Med. 45(5): 57-59
dc.relationRao KV. y Juneau RJ. 1975. Glycosides of Magnolia. II. Structural elucidation of magnolidin. Lloydia 38(4): 339-342
dc.relationRehman JU, Ali A, Tabanca N, Raman V, Demirci B, Başer KHC, Khan IA. 2013. Biting deterrent and larvicidal activity of essential oils of Magnolia grandiflora against Aedes aegypti. Planta Med. 79: P20
dc.relationRojas Y, Soto R, Anaya E, Retuerto F, Fuertes C. 2004. Efecto antitumoral de los alcaloides hidrosolubles de Abuta grandifolia (Mart) Sandwith, en línea celular HEP-2. Faculta de farmacia y bioquímica UNMSM. Ciencia e investigación VII (1): 22-26
dc.relationSadava D, Heller HC, Orians GH, Purves WK, Hillis DM. 2008. Life. The Science of Biology. Eighth edition, Sinauer Associates, Inc, Sunderland, MA, pp. 641
dc.relationSchühly W, Khan SI, Fischer NH. 2009. Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology 17(2): 106-110
dc.relationSeigler DS. 1998. Plant Secondary Metabolism. 1st edition, Springer Science+Business Media, New York, pp. 12
dc.relationShamma M. y Guinaudeau H. 1984. Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40: 4795-4822. En: Arango GJ. 2008. Alcaloides y compuestos nitrogenados. Universidad de Antioquia, Medellín, Colombia, pp. 49
dc.relationSharmeen R, Hossain N, Rahman M, Foysal J, Miah F. 2012. In vitro antibacterial activity of herbal aqueous extract against multi-drug resistant Klebsiella sp. isolated from human clinical samples. Int. curr. pharm. J. 1: 133-137
dc.relationSinha RK. 2004. Modern plant physiology. Alpha Science International Ltd., Pangbourne England, pp. 577
dc.relationTaiz L. y Zeiger E. 2010. Plant Physiology. Quinta edición, Sinauer Associates, Inc. USA, pp. 370
dc.relationThe Plant List. 2013. The Angiosperms (flowering plants). Versión 1.1. http://www.theplantlist.org/browse/A/#M [consultado Abril 7, 2016]
dc.relationTomita M, Watanabe Y, Furukawa H. 1961. Studies on the alkaloids of Magnoliaceous plants. XXV. Alkaloids of Magnolia grandiflora var. lanceolata Ait. Yakugaku Zasshi 81(1): 144-146
dc.relationTomita M. y Kozuka M. 1967. Studies on the alkaloids of magnoliaceous plants. 38. Alkaloids of Magnolia grandiflora Linn. Yakugaku Zasshi 87(9): 1134-1137
dc.relationTsai IL, Liou YF, Lu ST. 1989. Screening of isoquinoline alkaloids and their derivatives for antibacterial and antifungal activities. Gaoxiong Yi Xue Ke Xue Za Zhi 5: 132-145
dc.relationValiente M, D’Ocon P, Noguera MA, Cassels BK, Lugnier C, Ivorra MD. 2004. Vascular activity of (-)-anonaine, (-)-roemerine and (-)-pukateine, three natural 6a(R)-1,2-methylenedioxyaporphines with different affinities for alpha1-adrenoceptor subtypes. Planta Med. 70: 603-609
dc.relationVázquez-García JA, Neill DA, Asanza M, Recalde L. 2015. Magnolia vargasiana (Magnoliaceae), a new Andean species and a key to Ecuadorian species of subsection Talauma, with notes on its pollination biology. Phytotaxa 217: 26-34
dc.relationVelásquez C. y Serna M. 2005. Magnoliáceas de Antioquia. Primera edición. Impregon S.A., Colombia, pp. 32
dc.relationWang Y, Mu RM, Wang XR, Liu SX, Fan ZQ. 2009. Chemical composition of volatile constituents of Magnolia grandiflora. Chem. Nat. Compd. 45(2): 257-258
dc.relationWeerakkody NS, Caffin N, Turner MS, Dykes GA. 2010. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21: 1408-1414
dc.relationWysocki W, Gulewicz P, Aniszewski T, Ciesiolka D, Gulewicz K. 2001. Bioactive preparations from alkaloid-rich lupin. Relation between chemical composition and biological activity. Bull. Pol. Acad. Sci. Biol. 49: 9-17
dc.relationYang MH, Blunden G, Patel AV, O’Neill MJ, Lewis JA. 1994. Coumarins and sesquiterpene lactones from Magnolia grandiflora leaves. Planta Med. 60(4): 390
dc.relationYasukawa S, Kato H, Yamaoka R, Tanaka H, Arai H, Kawano S. 1992. Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biol. 7: 121-140
dc.relationZelenski SG. 1977. Alkaloids of Nelumbo latea (Willd.)pers. (Nymphaeaceae). J. Pharm Sci 66(11): 1627-1628
dc.relationZhou J, Xie G, Yan X. 2011. Encyclopedia of traditional Chinese medicines. Molecular structures, pharmacological activities, natural sources and applications. Vol. 3. Isolated compounds H-M. Springer, Berlin, pp. 367
dc.relationZiyaev R, Shtonda NI, Sturua MD, Abdusamatov A, Tsakadze DM. 1999. Alkaloids of some Magnolia species. Chem. Nat. Compd. 35(3): 366-367
dc.relationAbadía J. y Álvarez AM. 2009. La espectrometría de masas, una herramienta esencial en Metabolómica y Análisis comparativo de muestras. Fundación AulaDei. Parque Científico Tecnológico. pp. 7-20
dc.relationAgilent. 2010. Nuevas perspectivas: Metabolómica en Agilent. http://www.chem.agilent.com [Consultado Febrero 17, 2014]
dc.relationAp Rees T. y Hill SA. 1994. Metabolic control analysis of plant metabolism. Plant Cell Environ. 17: 587-599
dc.relationAzcón-Bieto J. y Talón M. 2001. Fundamentos de fisiología vegetal. Primera edición. McGraw-Hill Interamericana de España S.A., Barcelona, pp.522
dc.relationBell EA. 1980. Secondary plant products. Encyclopedia of plant physiology, New series, Volume 8. Springer-Verlag, Berlin, pp. 11
dc.relationBenthin B, Danz H, Hamburger M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211-219
dc.relationBermúdez AM. y Millán JL. 2013. Metodología para el mejoramiento en los procesos de dirección de proyectos del Fondo de pebención y atención de emergencias – FOPAE. Universidad EAN, pp- 13
dc.relationBravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11): 317-333
dc.relationCava MP. y Venkateswarlu A. 1971. Dehydroocopodine, dicentrinone, and other alkaloids from Ocotea macropoda and Hernandia jamaicensis. Tetrahedron, 27(13): 2639-2643
dc.relationChelombut’ko VA. y Israilov IA. 1988. Alkaloids of Papaver fugax. Chemistry of natural compounds, 24(4): 474-477
dc.relationCollinge DB, Gregersen P, Thordal-Christensen H. 1994. The induction of gene expression in response to pathogenic microbes. En: Mechanisms of plant growth and improved productivity: Modern approaches. Basra AS. Ed. Marcel Dekker, New York, pp. 391-433
dc.relationDeng SM, Cheng YX, Zhou J, Tan NH, Ding ZT. 2001. Magnoquinone and neolignanos from Magnolia rostrata. Acta Botánica Yunnanica, 2001-01. ISSN: 2095-0845
dc.relationEl-Feraly FS. 1983. Soulangianolide B. Phytochemistry, 22, 2239. En: KNApSAcK data base. 2017. http://kanaya.naist.jp/knapsack_jsp/information.jsp?word=C00012335 [consultado Febrero 20, 2017]
dc.relationEspinosa-García FJ. 1996. Revisión sobre la alelopatía de Eucalyptus L’Herit. Bol. Soc. Bot. 58: 55-74
dc.relationFiehn O, Kopka J, Trethewey RN, Willmitzer L. 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573-3580
dc.relationGerhardt R. y Heldt HW. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542-547
dc.relationGilchrist CH. y Kosuge T. 1980. Aromatic amino acid biosynthesis and its regulation. En: Miflin BS Ed. The Biochemistry of Plants. A comprehensive treatise, Vol 5. Academic Press, New York, pp. 507-537
dc.relationGiraldo L. y Behrentz E. 2006. Inventarios de emisiones desarrollados en 2003 y 2006 por la Universidad de Los Andes. Disponibles en: www.cleanairnet.org/lac_pt/1473/articles-56439_recurso_1.ppt http://dspace.uniandes.edu.co:5050/dspace/bitstream/1992/939/1/Balkema+Tesis+Liliana+Giraldo.pdf En: Rojas NY. 2007. Aire y problemas ambientales de Bogotá. Universidad Nacional de Colombia, pp. 4-6
dc.relationGoodacre R, Vaidyanathan S, Dunn W, Harrigan G, Kell D. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22 (5): 245-252
dc.relationGrundon MF. y McGarvey JEB. 1966. Alkaloids from greenheart. Part III. The structure of rodiasine. Mass spectra of bisbenzylisoquinoline alkaloids. J. Chem. Soc. C, 1082-1084
dc.relationGutiérrez DM, Ortiz CA, Mendoza A. 2008. Medición de fenoles y actividad antioxidante en malezas usadas para alimentación animal. Simposio de Metrología, Santiago de Querétaro, México, M220-1108: 1-5
dc.relationHalket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2004. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56(410): 219-243
dc.relationKamal-Eldin A, Moazzami A, Washi S. 2001. Sesame seed lignans: potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 3(1): 17-29
dc.relationKashiwaba N, Morroka S, Kimura M, Ono M, Toda J, Suzuki H, Sano T. 1996. New morphinane and Hasubanane alkaloids from Stephania cepharantha. J. Nat. Prod. 59 (5): 476-480
dc.relationLattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 23-67 ISBN:81-308-0034-9
dc.relationLi J, Christophel DC, Conran JG, Li HW. 2004. Phylogenetic relationships within the “core” Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl. Syst. Evol. 246: 19-34
dc.relationLikhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM, Ruangrungsi N. 1993. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erecta. J. Nat. Prod. 56(1): 30-38
dc.relationLong SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annual Review of Plant Biology, 55: 591-628
dc.relationMacheix JJ, Fleuriet A, Billot J. 2000. Fruit phenolics. Boca Ratón, Florida: CRC Press, Inc, pp. 378
dc.relationMacías FA, Galindo JC, Massanet GM. 1992. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 31(6): 1969-1977
dc.relationManske RHF. 1967. The Alkaloids. Chemistry and physiology. Volume IX. Academic Press, New York, pp. 32
dc.relationManske RHF. 1968. The Alkaloids. Chemistry and physiology. Volume X. Academic Press, New York, pp. 409
dc.relationMilder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH. 2005. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. British Journal of Nutrition, 93: 393-402
dc.relationMiyazawa M, Kasahara H, Kameoka H. 1993. Biotransformation of lignans: a specific microbial oxidation of (+)-eudesmin and (+)-magnolin by Aspergillus niger. Phytochemistry, 34(6): 1501-1507
dc.relationMudd JB. y Kozlowski TT. 1975. Responses of plants to air pollution. Academic Press Inc, New York, pp. 6, 24
dc.relationNielsen NPV, Carstensen JM, Smedsgaard J. 1998. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimized warping. J. Chromatogr. A 805 (1): 17-35
dc.relationPenuelas J. y Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13: 20-24
dc.relationPérez L, Rojas L, Carmona J, Ferrer H, Usubillaga A. 2010. Componentes volátiles de la Ocotea macropoda (Kunth) Mez. (Lauraceae). Abstract book of XIX SILAE (Società Italo-Latinoamericana Di Etnomedicina) Congress “Fernando Cabieses Molina” 2010 Villasimius, Cagliari, Italy, 6-10 september pp. 293
dc.relationPoore MD. Y Fries C. 1985. The ecologicl effects of Eucalyptus. FAO Forestry Paper, pp. 59
dc.relationPoore MD. y Fries C. 1987. Efectos ecológicos de los eucaliptos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. Roma, ISBN 92-5-302286-8, pp. 53
dc.relationRinguelet J. y Viña S. 2013. Productos naturales vegetales. Editorial de la Universidad de La Plata. Buenos Aires, Argentina, pp. 196, 209
dc.relationRozo WV. y Mendoza LE. 2013. Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 1 (21): 104-112. ISSN: 1692-7257 – Volumen 1 – Número 21 – 2013
dc.relationSánchez-Moreno C. 2002. Compuestos polifenólicos: estructura y clasificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria 329: 19-28
dc.relationSarker SD. y Maruyama Y. 2002. Magnolia. The genus Magnolia. Taylor & Francis, London, pp. 53, 59
dc.relationScalbert A. y Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr 130: 2073S-2085S
dc.relationShamma M. 1972. The Isoquinoline Alkaloids. Chemistry and pharmacology. Organic chemistry. Volume 25. Academic press, New York and London, pp. 222
dc.relationStreeter JG. y Strimbu CE. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253-257
dc.relationTaiz L. y Zeiger E. 2006. Plant physiology. Cuarta edición. Sinauer Associates INC Publishers. Sunderland, Massachusetts, pp. 764
dc.relationTalavera-Bustamante I, Bustio-Martínez L, Coma-Peña Y, Hernández-González N. 2013. Quimiometrix II, una plataforma automatizada para el procesamiento multivariante de datos químicos y bioquímicos. Experiencias de aplicación. Revista Cubana de Química, Vol. XXV, N° 3, 257-265
dc.relationTanahashi T, Su Y, Nagakura N, Nayeshiro H. 2000. Quaternary isoquinoline alkaloids from Stephania cepharantha. Chem. Pharm. Bull. 48(3): 370-373
dc.relationVecchietti V, Casagrande C, Ferrari G, Danieli B, Palmisano G. 1981. Alkaloids of Ocotea acutangula. Journal of the Chemical Society, Perkin Transactions 1, DOI: 10.1039/P19810000578, pp. 578
dc.relationWold S. y Sjostrom M. 1977. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. En: Kowalski B (Ed.), Chemometrics: Theory and application, pp. 243-282
dc.relationZhang L, Geng Y, Duan W, Wang D, Fu M, Wang X. 2009. Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J. Sep. Sci. 32(20): 3550-3554
dc.relationAguiar R. y Wink M. 2005. Do naїve ruminants degrade alkaloids in the rumen? J. Chem. Ecol. 31(4): 761-787
dc.relationAniszewski T. 1994. The biological basis of quinolizidine alkaloids. Science of Legumes 1: 1-24
dc.relationBerenbaum MR. 1983. Coumarins and caterpilars: A case for coevolution. Evolution 37: 163-178
dc.relationColegate SM. y Molyneux RJ. 2008. Bioactive natural products. Detection, isolation, and structural determination. Second edition. CRC Press, New York, pp. 521
dc.relationGora J, Kalemba D, Kurowska A. 1980. Chemical substances of Magnoliaceas and Calendulaceas. Herb. Hung. 19: 151-171
dc.relationJacyno JM, Montemurro N, Bates AD, Cutler HG. 1991. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora. J. Agric. Food Chem. 39: 1166-1168
dc.relationKnaggs AR. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119-136
dc.relationKnölker HJ. 2014. The alkaloids Chemistry and Biology. Volume 73. Elsevier, Oxford UK, pp. 178
dc.relationLiscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 66(11): 1374-1393
dc.relationMarcano D. y Hasegawa M. 2002. Fitoquímica orgánica. Segunda edición. Consejo de Desarrollo Científico y Humanístico. Universidad Central de Venezuela, pp. 384
dc.relationMuzquiz M, Burbano C, Cuadrado C, De la Cuadra C. 1993. Determinación de factores antinutritivos termorresistentes en leguminosas I: Alcaloides. Inv. Agraria. Producción y Protección Veg., 8: 351-361
dc.relationPhillipson JD, Roberts MF, Zenk MH. 1985. The chemistry and biology of Isoquinoline alkaloids. Springer-Verlag Berlin, Heidelberg, pp. 217-220
dc.relationThorne AD, Pexton JJ, Dytham C, Mayhew PJ. 2006. Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction. Proc. R. Soc. B 273(1590): 1099-1103
dc.relationTzin V. y Galili G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Molecular Plant, 3(6): 956-972
dc.relationWarumby SM. y Lacava AL. 2007. Alcalóides Aporfinóides Do Gênero Ocotea (Lauraceae). Quim. Nova, 30(1); 92-98
dc.relationWink M. 2003. Evolution of secondary metabolities from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 1: 3-19
dc.relationWink M. 2010. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. En: Biochemistry of plant secondary metabolism. Wink M (Ed), Annual plant reviews, 40: 1-19
dc.relationWink M. y Mohamed GIA. 2003. Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolities on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem. Syst. Ecol. 31:8: 897-917
dc.relationWold S, Geladi P, Esbensen K, Ohman J. 1987. Multi-way principal components and PLS-analysis. J. Chemometrics 1 (1): 41-56
dc.relationZamora-Natera F, García-López P, Ruiz-López M, Salcedo-Pérez E. 2008. Composición de alcaloides en semillas de Lupinus mexicanus (fabaceae) y evaluación antifúngica y alelopática del extracto alcaloideo. Agrociencia, vol.42 no. 2 http://www.scielo.org.mx/scielo.php?pid=S1405-31952008000200006&script=sci_arttext
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleVariación del metaboloma y la composición alcaloidal en Magnolia grandiflora (MAGNOLIACEAE) de la Sabana de Bogotá
dc.typeinfo:eu-repo/semantics/bachelorThesis


Este ítem pertenece a la siguiente institución